BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 17911012)

  • 41. Relationship between solid retention time and phosphorus removal in anaerobic-intermittent aeration process.
    Lee D; Kim M; Chung J
    J Biosci Bioeng; 2007 Apr; 103(4):338-44. PubMed ID: 17502275
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An enhanced biological phosphorus removal (EBPR) control strategy for sequencing batch reactors (SBRs).
    Dassanayake CY; Irvine RL
    Water Sci Technol; 2001; 43(3):183-9. PubMed ID: 11381903
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anaerobic treatment of synthetic medium-strength wastewater using a multistage biofilm reactor.
    Ghaniyari-Benis S; Borja R; Monemian SA; Goodarzi V
    Bioresour Technol; 2009 Mar; 100(5):1740-5. PubMed ID: 19000944
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Effects of two typical substrates as the sole carbon source on biological phosphorus removal with a single-stage oxic process].
    Liu YL; Wang DB; Li XM; Yang Q; Zou GL; Jia B; Zeng TJ; Ding Y; Zeng GM
    Huan Jing Ke Xue; 2010 Jan; 31(1):124-8. PubMed ID: 20329527
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microbial population response to changes of the operating conditions in a dynamic nutrient-removal sequencing batch reactor.
    Freitas F; Temudo M; Reis MA
    Bioprocess Biosyst Eng; 2005 Dec; 28(3):199-209. PubMed ID: 16215726
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetics of para-nitrophenol and chemical oxygen demand removal from synthetic wastewater in an anaerobic migrating blanket reactor.
    Kuşçu OS; Sponza DT
    J Hazard Mater; 2009 Jan; 161(2-3):787-99. PubMed ID: 18515004
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of initial pH control on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids.
    Liu Y; Chen Y; Zhou Q
    Chemosphere; 2007 Jan; 66(1):123-9. PubMed ID: 16781762
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The development of a novel hybrid aerating membrane-anaerobic baffled reactor for the simultaneous nitrogen and organic carbon removal from wastewater.
    Hu S; Yang F; Liu S; Yu L
    Water Res; 2009 Feb; 43(2):381-8. PubMed ID: 19046594
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sequencing batch membrane biofilm reactor for simultaneous nitrogen and phosphorus removal: novel application of membrane-aerated biofilm.
    Terada A; Yamamoto T; Tsuneda S; Hirata A
    Biotechnol Bioeng; 2006 Jul; 94(4):730-9. PubMed ID: 16673420
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater.
    Lemaire R; Yuan Z; Bernet N; Marcos M; Yilmaz G; Keller J
    Biodegradation; 2009 Jun; 20(3):339-50. PubMed ID: 18937035
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Biological phosphorus removal in sequencing batch reactor without anaerobic phase].
    Wang DB; Li XM; Yang Q; Zhang J; Liu YL; Liu X; Jia B; Zeng GM; Liao DX
    Huan Jing Ke Xue; 2008 Jul; 29(7):1867-73. PubMed ID: 18828368
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Study on poly-hydroxyalkanoate (PHA) production in pilot scale continuous mode wastewater treatment system.
    Chakravarty P; Mhaisalkar V; Chakrabarti T
    Bioresour Technol; 2010 Apr; 101(8):2896-9. PubMed ID: 20045314
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of bed materials on the performance of an anaerobic sequencing batch biofilm reactor treating domestic sewage.
    Garcia ML; Lapa KR; Foresti E; Zaiat M
    J Environ Manage; 2008 Sep; 88(4):1471-7. PubMed ID: 17765390
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of two different anaerobic feeding strategies to establish a stable aerobic granulated sludge bed.
    Rocktäschel T; Klarmann C; Helmreich B; Ochoa J; Boisson P; Sørensen KH; Horn H
    Water Res; 2013 Nov; 47(17):6423-31. PubMed ID: 24103394
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Temperature effects on glycogen accumulating organisms.
    Lopez-Vazquez CM; Hooijmans CM; Brdjanovic D; Gijzen HJ; van Loosdrecht MC
    Water Res; 2009 Jun; 43(11):2852-64. PubMed ID: 19380157
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous removal of organic matter and nitrogen compounds by an aerobic/anoxic membrane biofilm reactor.
    Hasar H; Xia S; Ahn CH; Rittmann BE
    Water Res; 2008 Sep; 42(15):4109-16. PubMed ID: 18684483
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of pH on biological phosphorus uptake.
    Serralta J; Ferrer J; Borrás L; Seco A
    Biotechnol Bioeng; 2006 Dec; 95(5):875-82. PubMed ID: 16958137
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of inverse anaerobic fluidized bed reactor for treating high strength organic wastewater.
    Sowmeyan R; Swaminathan G
    Bioresour Technol; 2008 Jun; 99(9):3877-80. PubMed ID: 17904363
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Treatment of low-strength soluble wastewater using an anaerobic baffled reactor (ABR).
    Gopala Krishna GV; Kumar P; Kumar P
    J Environ Manage; 2009 Jan; 90(1):166-76. PubMed ID: 18096298
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal.
    Lopez C; Pons MN; Morgenroth E
    Water Res; 2006 May; 40(8):1519-30. PubMed ID: 16631226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.