BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 17911111)

  • 1. Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein.
    Wang Y; Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2007 Nov; 282(46):33247-33251. PubMed ID: 17911111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The DeltaF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator.
    Chen EY; Bartlett MC; Loo TW; Clarke DM
    J Biol Chem; 2004 Sep; 279(38):39620-7. PubMed ID: 15272010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correctors promote folding of the CFTR in the endoplasmic reticulum.
    Loo TW; Bartlett MC; Clarke DM
    Biochem J; 2008 Jul; 413(1):29-36. PubMed ID: 18361776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introduction of the most common cystic fibrosis mutation (Delta F508) into human P-glycoprotein disrupts packing of the transmembrane segments.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2002 Aug; 277(31):27585-8. PubMed ID: 12070134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correctors enhance maturation of DeltaF508 CFTR by promoting interactions between the two halves of the molecule.
    Loo TW; Bartlett MC; Clarke DM
    Biochemistry; 2009 Oct; 48(41):9882-90. PubMed ID: 19761259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Additive effect of multiple pharmacological chaperones on maturation of CFTR processing mutants.
    Wang Y; Loo TW; Bartlett MC; Clarke DM
    Biochem J; 2007 Sep; 406(2):257-63. PubMed ID: 17535157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing mutations located throughout the human multidrug resistance P-glycoprotein disrupt interactions between the nucleotide binding domains.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2004 Sep; 279(37):38395-401. PubMed ID: 15247215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cystic fibrosis V232D mutation inhibits CFTR maturation by disrupting a hydrophobic pocket rather than formation of aberrant interhelical hydrogen bonds.
    Loo TW; Clarke DM
    Biochem Pharmacol; 2014 Mar; 88(1):46-57. PubMed ID: 24412276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing mutations disrupt interactions between the nucleotide binding and transmembrane domains of P-glycoprotein and the cystic fibrosis transmembrane conductance regulator (CFTR).
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2008 Oct; 283(42):28190-7. PubMed ID: 18708637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrector VX-809 stabilizes the first transmembrane domain of CFTR.
    Loo TW; Bartlett MC; Clarke DM
    Biochem Pharmacol; 2013 Sep; 86(5):612-9. PubMed ID: 23835419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating the folding of P-glycoprotein and cystic fibrosis transmembrane conductance regulator truncation mutants with pharmacological chaperones.
    Wang Y; Loo TW; Bartlett MC; Clarke DM
    Mol Pharmacol; 2007 Mar; 71(3):751-8. PubMed ID: 17132688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrector VX-809 promotes interactions between cytoplasmic loop one and the first nucleotide-binding domain of CFTR.
    Loo TW; Clarke DM
    Biochem Pharmacol; 2017 Jul; 136():24-31. PubMed ID: 28366727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corrector-mediated rescue of misprocessed CFTR mutants can be reduced by the P-glycoprotein drug pump.
    Loo TW; Bartlett MC; Shi L; Clarke DM
    Biochem Pharmacol; 2012 Feb; 83(3):345-54. PubMed ID: 22138447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chemical corrector modifies the channel function of F508del-CFTR.
    Kim Chiaw P; Wellhauser L; Huan LJ; Ramjeesingh M; Bear CE
    Mol Pharmacol; 2010 Sep; 78(3):411-8. PubMed ID: 20501743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppressor mutations in the transmembrane segments of P-glycoprotein promote maturation of processing mutants and disrupt a subset of drug-binding sites.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2007 Nov; 282(44):32043-52. PubMed ID: 17848563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unravelling the Regions of Mutant F508del-CFTR More Susceptible to the Action of Four Cystic Fibrosis Correctors.
    Amico G; Brandas C; Moran O; Baroni D
    Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31683989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview on chemical structures as ΔF508-CFTR correctors.
    Spanò V; Montalbano A; Carbone A; Scudieri P; Galietta LJV; Barraja P
    Eur J Med Chem; 2019 Oct; 180():430-448. PubMed ID: 31326599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific rescue of cystic fibrosis transmembrane conductance regulator processing mutants using pharmacological chaperones.
    Wang Y; Bartlett MC; Loo TW; Clarke DM
    Mol Pharmacol; 2006 Jul; 70(1):297-302. PubMed ID: 16624886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate-induced conformational changes in the transmembrane segments of human P-glycoprotein. Direct evidence for the substrate-induced fit mechanism for drug binding.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2003 Apr; 278(16):13603-6. PubMed ID: 12609990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and synthesis of a hybrid potentiator-corrector agonist of the cystic fibrosis mutant protein DeltaF508-CFTR.
    Mills AD; Yoo C; Butler JD; Yang B; Verkman AS; Kurth MJ
    Bioorg Med Chem Lett; 2010 Jan; 20(1):87-91. PubMed ID: 19954980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.