These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 17911259)

  • 1. Time course and calcium dependence of transmitter release at a single ribbon synapse.
    Goutman JD; Glowatzki E
    Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16341-6. PubMed ID: 17911259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of synaptic depression at the hair cell ribbon synapse that support auditory nerve function.
    Goutman JD
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9719-9724. PubMed ID: 28827351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term facilitation modulates size and timing of the synaptic response at the inner hair cell ribbon synapse.
    Goutman JD; Glowatzki E
    J Neurosci; 2011 Jun; 31(22):7974-81. PubMed ID: 21632919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmitter release from cochlear hair cells is phase locked to cyclic stimuli of different intensities and frequencies.
    Goutman JD
    J Neurosci; 2012 Nov; 32(47):17025-35a. PubMed ID: 23175853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature enhances exocytosis efficiency at the mouse inner hair cell ribbon synapse.
    Nouvian R
    J Physiol; 2007 Oct; 584(Pt 2):535-42. PubMed ID: 17717016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental Synaptic Changes at the Transient Olivocochlear-Inner Hair Cell Synapse.
    Kearney G; Zorrilla de San Martín J; Vattino LG; Elgoyhen AB; Wedemeyer C; Katz E
    J Neurosci; 2019 May; 39(18):3360-3375. PubMed ID: 30755493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmitter release at the hair cell ribbon synapse.
    Glowatzki E; Fuchs PA
    Nat Neurosci; 2002 Feb; 5(2):147-54. PubMed ID: 11802170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Burst activity and ultrafast activation kinetics of CaV1.3 Ca²⁺ channels support presynaptic activity in adult gerbil hair cell ribbon synapses.
    Zampini V; Johnson SL; Franz C; Knipper M; Holley MC; Magistretti J; Masetto S; Marcotti W
    J Physiol; 2013 Aug; 591(16):3811-20. PubMed ID: 23713031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional maturation of the exocytotic machinery at gerbil hair cell ribbon synapses.
    Johnson SL; Franz C; Knipper M; Marcotti W
    J Physiol; 2009 Apr; 587(Pt 8):1715-26. PubMed ID: 19237422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic organization in cochlear inner hair cells deficient for the CaV1.3 (alpha1D) subunit of L-type Ca2+ channels.
    Nemzou N RM; Bulankina AV; Khimich D; Giese A; Moser T
    Neuroscience; 2006 Sep; 141(4):1849-60. PubMed ID: 16828974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tonotopic variation in the calcium dependence of neurotransmitter release and vesicle pool replenishment at mammalian auditory ribbon synapses.
    Johnson SL; Forge A; Knipper M; Münkner S; Marcotti W
    J Neurosci; 2008 Jul; 28(30):7670-8. PubMed ID: 18650343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustered Ca
    Vincent PFY; Cho S; Tertrais M; Bouleau Y; von Gersdorff H; Dulon D
    Cell Rep; 2018 Dec; 25(12):3451-3464.e3. PubMed ID: 30566869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elementary properties of Ca(2+) channels and their influence on multivesicular release and phase-locking at auditory hair cell ribbon synapses.
    Magistretti J; Spaiardi P; Johnson SL; Masetto S
    Front Cell Neurosci; 2015; 9():123. PubMed ID: 25904847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times.
    Peterson AJ; Heil P
    Hear Res; 2018 Jun; 363():1-27. PubMed ID: 28987786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse.
    Moser T; Neef A; Khimich D
    J Physiol; 2006 Oct; 576(Pt 1):55-62. PubMed ID: 16901948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Coupling between Ca
    Johnson SL; Olt J; Cho S; von Gersdorff H; Marcotti W
    J Neurosci; 2017 Mar; 37(9):2471-2484. PubMed ID: 28154149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elementary properties of CaV1.3 Ca(2+) channels expressed in mouse cochlear inner hair cells.
    Zampini V; Johnson SL; Franz C; Lawrence ND; Münkner S; Engel J; Knipper M; Magistretti J; Masetto S; Marcotti W
    J Physiol; 2010 Jan; 588(Pt 1):187-99. PubMed ID: 19917569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse.
    Grant L; Yi E; Glowatzki E
    J Neurosci; 2010 Mar; 30(12):4210-20. PubMed ID: 20335456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to Build a Fast and Highly Sensitive Sound Detector That Remains Robust to Temperature Shifts.
    Chen M; von Gersdorff H
    J Neurosci; 2019 Sep; 39(37):7260-7276. PubMed ID: 31315946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells.
    Frank T; Khimich D; Neef A; Moser T
    Proc Natl Acad Sci U S A; 2009 Mar; 106(11):4483-8. PubMed ID: 19246382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.