These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1791174)

  • 21. In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging.
    Schulte FA; Lambers FM; Kuhn G; Müller R
    Bone; 2011 Mar; 48(3):433-42. PubMed ID: 20950723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical stimulation induces pp125(FAK) and pp60(src) activity in an in vivo model of trabecular bone formation.
    Moalli MR; Wang S; Caldwell NJ; Patil PV; Maynard CR
    J Appl Physiol (1985); 2001 Aug; 91(2):912-8. PubMed ID: 11457810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-term prediction of three-dimensional bone architecture in simulations of pre-, peri- and post-menopausal microstructural bone remodeling.
    Müller R
    Osteoporos Int; 2005 Mar; 16 Suppl 2():S25-35. PubMed ID: 15340800
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model of bone adaptation as an optimization process.
    Bagge M
    J Biomech; 2000 Nov; 33(11):1349-57. PubMed ID: 10940393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry.
    Lambers FM; Schulte FA; Kuhn G; Webster DJ; Müller R
    Bone; 2011 Dec; 49(6):1340-50. PubMed ID: 21964411
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models.
    Adachi T; Tsubota K; Tomita Y; Hollister SJ
    J Biomech Eng; 2001 Oct; 123(5):403-9. PubMed ID: 11601724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Histologic observations of bone remodeling adjacent to endosteal dental implants.
    Steflik DE; Noel C; McBrayer C; Lake FT; Parr GR; Sisk AL; Hanes PJ
    J Oral Implantol; 1995; 21(2):96-106. PubMed ID: 8699510
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses.
    Engh CA; O'Connor D; Jasty M; McGovern TF; Bobyn JD; Harris WH
    Clin Orthop Relat Res; 1992 Dec; (285):13-29. PubMed ID: 1446429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law.
    Tsubota K; Suzuki Y; Yamada T; Hojo M; Makinouchi A; Adachi T
    J Biomech; 2009 May; 42(8):1088-94. PubMed ID: 19403138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level.
    Schulte FA; Ruffoni D; Lambers FM; Christen D; Webster DJ; Kuhn G; Müller R
    PLoS One; 2013; 8(4):e62172. PubMed ID: 23637993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An analytical investigation into possible mechanical causes of bone remodelling.
    Wright KW; Yettram AL
    J Biomed Eng; 1979 Jan; 1(1):41-9. PubMed ID: 537331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Constant strain rate and peri-implant bone modeling: an in vivo longitudinal micro-CT analysis.
    De Smet E; Jaecques SV; Wevers M; Sloten JV; Naert IE
    Clin Implant Dent Relat Res; 2013 Jun; 15(3):358-66. PubMed ID: 21815993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting time-dependent remodeling of bone around immediately loaded dental implants with different designs.
    Eser A; Tonuk E; Akca K; Cehreli MC
    Med Eng Phys; 2010 Jan; 32(1):22-31. PubMed ID: 19884034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of ingrowth regions on bone remodelling around a cementless hip resurfacing femoral implant.
    Haider IT; Speirs AD; Beaulé PE; Frei H
    Comput Methods Biomech Biomed Engin; 2015; 18(12):1349-57. PubMed ID: 24697332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone remodeling and in vivo strain analysis of intact and implanted greyhound proximal femora.
    Szivek JA; Johnson EM; Magee FP; Emmanual J; Poser R; Koeneman JB
    J Invest Surg; 1994; 7(3):213-33. PubMed ID: 7918244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization.
    Boyle C; Kim IY
    J Biomech; 2011 Jun; 44(9):1722-8. PubMed ID: 21497816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strain redistribution in the canine femur resulting from hip implants of different stiffnesses.
    Szivek JA; Magee FP; Hanson T; Hedley AK
    J Invest Surg; 1994; 7(2):95-110. PubMed ID: 8049183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of bone type on the gene expression in normal bone and at the bone-implant interface: experiments in animal model.
    Omar O; Suska F; Lennerås M; Zoric N; Svensson S; Hall J; Emanuelsson L; Nannmark U; Thomsen P
    Clin Implant Dent Relat Res; 2011 Jun; 13(2):146-56. PubMed ID: 19438950
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical stimulus to bone.
    Goodship AE
    Ann Rheum Dis; 1992 Jan; 51(1):4-6. PubMed ID: 1540035
    [No Abstract]   [Full Text] [Related]  

  • 40. Correlation of computed finite element stresses to bone density after remodeling around cementless femoral implants.
    Skinner HB; Kilgus DJ; Keyak J; Shimaoka EE; Kim AS; Tipton JS
    Clin Orthop Relat Res; 1994 Aug; (305):178-89. PubMed ID: 8050227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.