These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 17911760)

  • 1. A discrete time-space geography for epidemiology: from mixing groups to pockets of local order in pandemic simulations.
    Holm E; Timpka T
    Stud Health Technol Inform; 2007; 129(Pt 1):464-8. PubMed ID: 17911760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dealing with ecological fallacy in preparations for influenza pandemics: use of a flexible environment for adaptation of simulations to household structures in local contexts.
    Timpka T; Morin M; Jenvald J; Gursky E; Eriksson H
    Stud Health Technol Inform; 2007; 129(Pt 1):218-22. PubMed ID: 17911710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ontology based modeling of pandemic simulation scenarios.
    Eriksson H; Morin M; Jenvald J; Gursky E; Holm E; Timpka T
    Stud Health Technol Inform; 2007; 129(Pt 1):755-9. PubMed ID: 17911818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of network clustering and assortativity on epidemic behaviour.
    Badham J; Stocker R
    Theor Popul Biol; 2010 Feb; 77(1):71-5. PubMed ID: 19948179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epidemic patch models applied to pandemic influenza: contact matrix, stochasticity, robustness of predictions.
    Lunelli A; Pugliese A; Rizzo C
    Math Biosci; 2009 Jul; 220(1):24-33. PubMed ID: 19371752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epidemic models with heterogeneous mixing and treatment.
    Brauer F
    Bull Math Biol; 2008 Oct; 70(7):1869-85. PubMed ID: 18663538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structured epidemic models and the spread of influenza in the central Canadian subarctic.
    Sattenspiel L; Herring DA
    Hum Biol; 1998 Feb; 70(1):91-115. PubMed ID: 9489237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-empirical power-law scaling of new infection rate to model epidemic dynamics with inhomogeneous mixing.
    Stroud PD; Sydoriak SJ; Riese JM; Smith JP; Mniszewski SM; Romero PR
    Math Biosci; 2006 Oct; 203(2):301-18. PubMed ID: 16540129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The 1918 influenza epidemic in Bogota].
    Martínez Martín AF; Manrique Abril FG; Meléndez Alvarez BF
    Dynamis; 2007; 27():287-307, 14. PubMed ID: 18351168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of the local Knox statistic for the prospective monitoring of disease occurrences in space and time.
    Brooke Marshall J; Spitzner DJ; Woodall WH
    Stat Med; 2007 Mar; 26(7):1579-93. PubMed ID: 16927249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protecting public health and global freight transportation systems during an influenza pandemic.
    Luke TC; Rodrigue JP
    Am J Disaster Med; 2008; 3(2):99-107. PubMed ID: 18522251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stigma in the time of influenza: social and institutional responses to pandemic emergencies.
    Barrett R; Brown PJ
    J Infect Dis; 2008 Feb; 197 Suppl 1():S34-S7. PubMed ID: 18269326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating the effect of quarantine on the spread of the 1918-19 flu in central Canada.
    Sattenspiel L; Herring DA
    Bull Math Biol; 2003 Jan; 65(1):1-26. PubMed ID: 12597114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal dynamics of influenza outbreaks.
    Onozuka D; Hagihara A
    Epidemiology; 2008 Nov; 19(6):824-8. PubMed ID: 18813019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Border control measures in the influenza pandemic plans of six South Pacific nations: a critical review.
    McLeod M; Kelly H; Wilson N; Baker MG
    N Z Med J; 2008 Jul; 121(1278):62-72. PubMed ID: 18670475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling development of epidemics with dynamic small-world networks.
    Saramäki J; Kaski K
    J Theor Biol; 2005 Jun; 234(3):413-21. PubMed ID: 15784275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reducing the risk of pandemic influenza in Aboriginal communities.
    Massey PD; Pearce G; Taylor KA; Orcher L; Saggers S; Durrheim DN
    Rural Remote Health; 2009; 9(3):1290. PubMed ID: 19728766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation model of pandemic influenza in the whole of Japan.
    Ohkusa Y; Sugawara T
    Jpn J Infect Dis; 2009 Mar; 62(2):98-106. PubMed ID: 19305048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discourses of disease, discourses of disadvantage: a critical analysis of National Pandemic Influenza Preparedness Plans.
    Garoon JP; Duggan PS
    Soc Sci Med; 2008 Oct; 67(7):1133-42. PubMed ID: 18656294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality.
    Krewski D; Jerrett M; Burnett RT; Ma R; Hughes E; Shi Y; Turner MC; Pope CA; Thurston G; Calle EE; Thun MJ; Beckerman B; DeLuca P; Finkelstein N; Ito K; Moore DK; Newbold KB; Ramsay T; Ross Z; Shin H; Tempalski B
    Res Rep Health Eff Inst; 2009 May; (140):5-114; discussion 115-36. PubMed ID: 19627030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.