These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17912283)

  • 1. Generalized scattering-matrix method for the analysis of two-dimensional photonic bandgap devices.
    Crocco L; Cuomo F; Isernia T
    J Opt Soc Am A Opt Image Sci Vis; 2007 Oct; 24(10):A12-22. PubMed ID: 17912283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical computation of the Green's function for two-dimensional finite-size photonic crystals of infinite length.
    Seydou F; Ramahi OM; Duraiswami R; Seppänen T
    Opt Express; 2006 Nov; 14(23):11362-71. PubMed ID: 19529554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence.
    Moretti L; Mocella V
    Opt Express; 2007 Nov; 15(23):15314-23. PubMed ID: 19550817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant add-drop filter based on a photonic quasicrystal.
    Romero-Vivas J; Chigrin D; Lavrinenko A; Sotomayor Torres C
    Opt Express; 2005 Feb; 13(3):826-35. PubMed ID: 19494943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Dirichlet-to-Neumann map method for scattering by circular cylinders on a lattice.
    She S; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2012 Sep; 29(9):1999-2004. PubMed ID: 23201958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation-induced bandgap tuning of 2D silicon-based photonic crystals.
    Jun S; Cho YS
    Opt Express; 2003 Oct; 11(21):2769-74. PubMed ID: 19471392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large complete bandgaps in a two-dimensional square photonic crystal with isolated single-atom dielectric rods in air.
    Yang XL; Cai LZ; Wang YR; Dong GY; Shen XX; Meng XF; Hu Y
    Nanotechnology; 2008 Jan; 19(2):025201. PubMed ID: 21817535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral element method for band structures of three-dimensional anisotropic photonic crystals.
    Luo M; Liu QH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056702. PubMed ID: 20365091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical properties of a square-lattice photonic crystal within the partial bandgap.
    Tang Z; Peng R; Ye Y; Zhao C; Fan D; Zhang H; Wen S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):379-84. PubMed ID: 17206253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic cavity with arbitrary Q and small modal volume without a complete photonic bandgap.
    Watts MR; Johnson SG; Haus HA; Joannopoulos JD
    Opt Lett; 2002; 27(20):1785-7. PubMed ID: 18033363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers.
    Dangui V; Digonnet MJ; Kino GS
    Opt Express; 2006 Apr; 14(7):2979-93. PubMed ID: 19516437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The finite element method applied to the study of two-dimensional photonic crystals and resonant cavities.
    Andonegui I; Garcia-Adeva AJ
    Opt Express; 2013 Feb; 21(4):4072-92. PubMed ID: 23481942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral element method for band structures of two-dimensional anisotropic photonic crystals.
    Luo M; Liu QH; Li Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026705. PubMed ID: 19391872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and accurate finite element analysis of large-scale three-dimensional photonic devices with a robust domain decomposition method.
    Xue MF; Kang YM; Arbabi A; McKeown SJ; Goddard LL; Jin JM
    Opt Express; 2014 Feb; 22(4):4437-52. PubMed ID: 24663766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of background dielectric on TE-polarized photonic bandgap of metallodielectric photonic crystals using Dirichlet-to-Neumann map method.
    Sedghi A; Rezaei B
    Appl Opt; 2016 Nov; 55(33):9417-9421. PubMed ID: 27869843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient analysis of photonic crystal devices by Dirichlet-to-Neumann maps.
    Hu Z; Lu YY
    Opt Express; 2008 Oct; 16(22):17383-99. PubMed ID: 18958021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative study of the effect of cladding thickness on modal confinement loss in photonic waveguides.
    Jiang S; Lai J
    Opt Express; 2016 Oct; 24(22):24872-24882. PubMed ID: 27828428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic bandgap calculations with Dirichlet-to-Neumann maps.
    Yuan J; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2006 Dec; 23(12):3217-22. PubMed ID: 17106479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals.
    Liu J; Fan Z; Xiao H; Zhang W; Guan C; Yuan L
    Appl Opt; 2011 Aug; 50(24):4868-72. PubMed ID: 21857712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.