These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17912283)

  • 21. Two-dimensional scattering from a multilayered periodic structure of arbitrary shapes.
    Sesay M; Yokota M
    Appl Opt; 2010 Nov; 49(33):6537-45. PubMed ID: 21102680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of arbitrary defects in photonic crystals by use of the source-model technique.
    Ludwig A; Leviatan Y
    J Opt Soc Am A Opt Image Sci Vis; 2004 Jul; 21(7):1334-43. PubMed ID: 15260265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and fabrication of rod-type two-dimensional photonic crystal slabs with large high-order bandgaps in near-infrared wavelengths.
    Jiang L; Jia W; Zheng G; Li X
    Opt Lett; 2012 May; 37(9):1424-6. PubMed ID: 22555692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vector scattering from one-dimensional periodic perfectly conducting surface: transverse magnetic polarization.
    Huang Q; Dong TL; Chen B; Li Q; Tian J; Chen P
    J Opt Soc Am A Opt Image Sci Vis; 2014 Oct; 31(10):2321-7. PubMed ID: 25401261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlling electromagnetic fields with graded photonic crystals in metamaterial regime.
    Vasić B; Isić G; Gajić R; Hingerl K
    Opt Express; 2010 Sep; 18(19):20321-33. PubMed ID: 20940924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of optical properties of circular spiral photonic crystals.
    Grossman N; Ovsianikov A; Petrov A; Eich M; Chichkov B
    Opt Express; 2007 Oct; 15(20):13236-43. PubMed ID: 19550592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Opening up complete photonic bandgaps in three-dimensional photonic crystals consisting of biaxial dielectric spheres.
    Liu S; Lin Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066609. PubMed ID: 16906999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On beam shaping of the field radiated by a line source coupled to finite or infinite photonic crystals.
    Ceccuzzi S; Jandieri V; Baccarelli P; Ponti C; Schettini G
    J Opt Soc Am A Opt Image Sci Vis; 2016 Apr; 33(4):764-70. PubMed ID: 27140789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All-metallic three-dimensional photonic crystals with a large infrared bandgap.
    Fleming JG; Lin SY; El-Kady I; Biswas R; Ho KM
    Nature; 2002 May; 417(6884):52-5. PubMed ID: 11986662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photonic band structures solved by a plane-wave-based transfer-matrix method.
    Li ZY; Lin LL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046607. PubMed ID: 12786509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modal transmission-line theory of three-dimensional periodic structures with arbitrary lattice configurations.
    Lin CH; Leung KM; Tamir T
    J Opt Soc Am A Opt Image Sci Vis; 2002 Oct; 19(10):2005-17. PubMed ID: 12365620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel electromagnetic approach to photonic crystals with use of the C method.
    Vallius T; Kuittinen M
    J Opt Soc Am A Opt Image Sci Vis; 2003 Jan; 20(1):85-91. PubMed ID: 12542321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.
    Degirmenci E; Landais P
    Appl Opt; 2013 Oct; 52(30):7367-75. PubMed ID: 24216592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scattering matrix approach to multichannel transport in many lead graphene nanoribbons.
    Mencarelli D; Rozzi T; Pierantoni L
    Nanotechnology; 2010 Apr; 21(15):155701. PubMed ID: 20299725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of the complete photonic bandgap of two-dimensional photonic crystal.
    Chau YF; Wu FL; Jiang ZH; Li HY
    Opt Express; 2011 Mar; 19(6):4862-7. PubMed ID: 21445122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of bandgap characteristics of two-dimensional periodic structures by using the source-model technique.
    Ludwig A; Leviatan Y
    J Opt Soc Am A Opt Image Sci Vis; 2003 Aug; 20(8):1553-62. PubMed ID: 12938911
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices.
    Weirich J; Laegsgaard J; Wei L; Alkeskjold TT; Wu TX; Wu ST; Bjarklev A
    Opt Express; 2010 Mar; 18(5):4074-87. PubMed ID: 20389422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. S-parameters, non-Hermitian ports and the finite-element implementation in photonic devices with 𝒫𝒯-symmetry.
    Wu B; Wang Z; Chen W; Xiong Z; Xu J; Chen Y
    Opt Express; 2019 Jun; 27(13):17648-17657. PubMed ID: 31252721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wavelet-based analysis of transient electromagnetic wave propagation in photonic crystals.
    Shifman Y; Leviatan Y
    J Opt Soc Am A Opt Image Sci Vis; 2004 Mar; 21(3):430-8. PubMed ID: 15005409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybridization of electromagnetic numerical methods through the G-matrix algorithm.
    Hugonin JP; Besbes M; Lalanne P
    Opt Lett; 2008 Jul; 33(14):1590-2. PubMed ID: 18628807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.