These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17913194)

  • 1. Modelling of secondary clarifier using regression analysis and artificial neural networks.
    Jeyanthi J; Saseetharan MK; Priya VS
    J Environ Sci Eng; 2006 Jan; 48(1):1-8. PubMed ID: 17913194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of COD removal in a biological wastewater treatment plant using adaptive neuro-fuzzy inference system and artificial neural network.
    Civelekoglu G; Yigit NO; Diamadopoulos E; Kitis M
    Water Sci Technol; 2009; 60(6):1475-87. PubMed ID: 19759450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance.
    Mjalli FS; Al-Asheh S; Alfadala HE
    J Environ Manage; 2007 May; 83(3):329-38. PubMed ID: 16806660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of sewer on-line total solids data in wastewater treatment plant modelling.
    Poutiainen H; Niska H; Heinonen-Tanski H; Kolehmainen M
    Water Sci Technol; 2010; 62(4):743-50. PubMed ID: 20729574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial neural network modelling of a large-scale wastewater treatment plant operation.
    Güçlü D; Dursun S
    Bioprocess Biosyst Eng; 2010 Nov; 33(9):1051-8. PubMed ID: 20445993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of a reactive primary clarifier.
    Gernaey K; Vanrolleghem PA; Lessard P
    Water Sci Technol; 2001; 43(7):73-81. PubMed ID: 11385877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of chemical resistance of dental ceramics by neural network.
    Zivko-Babić J; Lisjak D; Curković L; Jakovac M
    Dent Mater; 2008 Jan; 24(1):18-27. PubMed ID: 17397915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network.
    Pendashteh AR; Fakhru'l-Razi A; Chaibakhsh N; Abdullah LC; Madaeni SS; Abidin ZZ
    J Hazard Mater; 2011 Aug; 192(2):568-75. PubMed ID: 21676540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid neural network modeling of a full-scale industrial wastewater treatment process.
    Lee DS; Jeon CO; Park JM; Chang KS
    Biotechnol Bioeng; 2002 Jun; 78(6):670-82. PubMed ID: 11992532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid modelling of anaerobic wastewater treatment processes.
    Karama A; Bernard O; Genovesi A; Dochain D; Benhammou A; Steyer JP
    Water Sci Technol; 2001; 43(1):43-50. PubMed ID: 11379111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial intelligence based optimization of exocellular glucansucrase production from Leuconostoc dextranicum NRRL B-1146.
    Singh A; Majumder A; Goyal A
    Bioresour Technol; 2008 Nov; 99(17):8201-6. PubMed ID: 18440808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of Artificial Neural Networks in integrated water management: fiction or future?
    Schulze FH; Wolf H; Jansen HW; van der Veer P
    Water Sci Technol; 2005; 52(9):21-31. PubMed ID: 16445170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary self-organising modelling of a municipal wastewater treatment plant.
    Hong YS; Bhamidimarri R
    Water Res; 2003 Mar; 37(6):1199-212. PubMed ID: 12598184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model-based approach to predicting BOD5 in settled sewage.
    Brydon DA; Frodsham DA
    Water Sci Technol; 2001; 44(2-3):9-15. PubMed ID: 11548026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activated sludge process control--development of operational diagrams.
    Jeyanthi J; Saseetharan MK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(3):331-6. PubMed ID: 17365299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting sorption of pharmaceuticals and personal care products onto soil and digested sludge using artificial neural networks.
    Barron L; Havel J; Purcell M; Szpak M; Kelleher B; Paull B
    Analyst; 2009 Apr; 134(4):663-70. PubMed ID: 19305914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural network approach for on-line fault detection of nitrogen sensors in alternated active sludge treatment plants.
    Caccavale F; Digiulio P; Iamarino M; Masi S; Pierri F
    Water Sci Technol; 2010; 62(12):2760-8. PubMed ID: 21123904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing wet weather flow management using state of the art tools.
    Parker DS; Merlo RP; Jimenez JA; Wahlberg EJ
    Water Sci Technol; 2008; 57(8):1247-51. PubMed ID: 18469397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple neural network response variability as a predictor of neural network accuracy for chromosome recognition.
    Leon MA; Gader P; Keller J
    Biomed Sci Instrum; 1996; 32():31-7. PubMed ID: 8672685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving neural network prediction of effluent from biological wastewater treatment plant of industrial park using fuzzy learning approach.
    Pai TY; Wang SC; Chiang CF; Su HC; Yu LF; Sung PJ; Lin CY; Hu HC
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):781-90. PubMed ID: 19253022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.