BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 17913360)

  • 1. Coeruleospinal inhibition of visceral nociceptive processing in the rat spinal cord.
    Liu L; Tsuruoka M; Maeda M; Hayashi B; Inoue T
    Neurosci Lett; 2007 Oct; 426(3):139-44. PubMed ID: 17913360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Descending modulation of visceral nociceptive transmission from the locus coeruleus/subcoeruleus in the rat.
    Liu L; Tsuruoka M; Maeda M; Hayashi B; Wang X; Inoue T
    Brain Res Bull; 2008 Aug; 76(6):616-25. PubMed ID: 18598853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal pathways mediating coeruleospinal antinociception in the rat.
    Tsuruoka M; Maeda M; Nagasawa I; Inoue T
    Neurosci Lett; 2004 May; 362(3):236-9. PubMed ID: 15158022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Descending influence from the nucleus locus coeruleus/subcoeruleus on visceral nociceptive transmission in the rat spinal cord.
    Tsuruoka M; Wang D; Tamaki J; Inoue T
    Neuroscience; 2010 Feb; 165(4):1019-24. PubMed ID: 19958815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of the nucleus locus coeruleus/subcoeruleus suppresses visceromotor responses to colorectal distention in the rat.
    Tsuruoka M; Maeda M; Inoue T
    Neurosci Lett; 2005 Jun 10-17; 381(1-2):97-101. PubMed ID: 15882797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A possible synaptic configuration underlying coeruleospinal inhibition of visceral nociceptive transmission in the rat.
    Hayashi B; Tsuruoka M; Maeda M; Tamaki J; Inoue T
    Neurol Sci; 2012 Apr; 33(2):463-8. PubMed ID: 21845475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nociceptive spinothalamic tract and postsynaptic dorsal column neurons are modulated by paraventricular hypothalamic activation.
    Rojas-Piloni G; Martínez-Lorenzana G; DelaTorre S; Condés-Lara M
    Eur J Neurosci; 2008 Aug; 28(3):546-58. PubMed ID: 18702726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of locus coeruleus stimulation on the responses of SI neurons of the rat to controlled natural and electrical stimulation of the skin.
    Snow PJ; Andre P; Pompeiano O
    Arch Ital Biol; 1999 Feb; 137(1):1-28. PubMed ID: 9934431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient receptor potential vanilloid type 1 receptor regulates glutamatergic synaptic inputs to the spinothalamic tract neurons of the spinal cord deep dorsal horn.
    Kim H; Cui L; Kim J; Kim SJ
    Neuroscience; 2009 May; 160(2):508-16. PubMed ID: 19236908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective blockade by yohimbine of locus coeruleus-induced inhibition of nociceptive reflex but not that of C responses of spinal dorsal horn neurons in rats.
    Zhang KM; Zhao ZQ
    Zhongguo Yao Li Xue Bao; 1994 Nov; 15(6):491-4. PubMed ID: 7709744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thalamic modulation of visceral nociceptive processing in adult rats with neonatal colon irritation.
    Saab CY; Park YC; Al-Chaer ED
    Brain Res; 2004 May; 1008(2):186-92. PubMed ID: 15145755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of activity characteristics of the cuneate nucleus and thoracic spinal neurons receiving noxious cardiac and/or somatic inputs in rats.
    Qin C; Goodman MD; Little JM; Farber JP; Foreman RD
    Brain Res; 2010 Jul; 1346():102-11. PubMed ID: 20595052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative characterization of ceruleospinal inhibition of nociceptive transmission in the rat.
    Jones SL; Gebhart GF
    J Neurophysiol; 1986 Nov; 56(5):1397-410. PubMed ID: 3025380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Descending pathways from activated locus coeruleus/subcoeruleus following unilateral hindpaw inflammation in the rat.
    Maeda M; Tsuruoka M; Hayashi B; Nagasawa I; Inoue T
    Brain Res Bull; 2009 Mar; 78(4-5):170-4. PubMed ID: 18926888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The roles of pathways in the spinal cord lateral and dorsal funiculi in signaling nociceptive somatic and visceral stimuli in rats.
    Palecek J; Paleckova V; Willis WD
    Pain; 2002 Apr; 96(3):297-307. PubMed ID: 11973002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of spinohypothalamic tract neurons in the thoracic spinal cord of rats to somatic stimuli and to graded distention of the bile duct.
    Zhang X; Gokin AP; Giesler GJ
    Somatosens Mot Res; 2002; 19(1):5-17. PubMed ID: 11962647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal pathways mediating tonic, coeruleospinal, and raphe-spinal descending inhibition in the rat.
    Jones SL; Gebhart GF
    J Neurophysiol; 1987 Jul; 58(1):138-59. PubMed ID: 3612222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased C-fiber nociceptive input potentiates inhibitory glycinergic transmission in the spinal dorsal horn.
    Zhou HY; Zhang HM; Chen SR; Pan HL
    J Pharmacol Exp Ther; 2008 Mar; 324(3):1000-10. PubMed ID: 18079355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical stimulation of the primary somatosensory cortex inhibits spinal dorsal horn neuron activity.
    Senapati AK; Huntington PJ; LaGraize SC; Wilson HD; Fuchs PN; Peng YB
    Brain Res; 2005 Sep; 1057(1-2):134-40. PubMed ID: 16122710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the involvement of the spinoparabrachial pathway, but not the spinothalamic tract or post-synaptic dorsal column, in acute bone nociception.
    Williams MC; Ivanusic JJ
    Neurosci Lett; 2008 Oct; 443(3):246-50. PubMed ID: 18687382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.