BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 17913569)

  • 1. Plant organelle proteomics.
    Lilley KS; Dupree P
    Curr Opin Plant Biol; 2007 Dec; 10(6):594-9. PubMed ID: 17913569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods of quantitative proteomics and their application to plant organelle characterization.
    Lilley KS; Dupree P
    J Exp Bot; 2006; 57(7):1493-9. PubMed ID: 16617121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in Arabidopsis thaliana.
    Dunkley TP; Dupree P; Watson RB; Lilley KS
    Biochem Soc Trans; 2004 Jun; 32(Pt3):520-3. PubMed ID: 15157176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The organelle-focused proteomes and interactomes in rice.
    Liu L; Jiang L; Chen M
    Curr Protein Pept Sci; 2014; 15(6):583-90. PubMed ID: 25059325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant organelle proteomics: collaborating for optimal cell function.
    Agrawal GK; Bourguignon J; Rolland N; Ephritikhine G; Ferro M; Jaquinod M; Alexiou KG; Chardot T; Chakraborty N; Jolivet P; Doonan JH; Rakwal R
    Mass Spectrom Rev; 2011; 30(5):772-853. PubMed ID: 21038434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple marker abundance profiling: combining selected reaction monitoring and data-dependent acquisition for rapid estimation of organelle abundance in subcellular samples.
    Hooper CM; Stevens TJ; Saukkonen A; Castleden IR; Singh P; Mann GW; Fabre B; Ito J; Deery MJ; Lilley KS; Petzold CJ; Millar AH; Heazlewood JL; Parsons HT
    Plant J; 2017 Dec; 92(6):1202-1217. PubMed ID: 29024340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis proteomics: a simple and standardizable workflow for quantitative proteome characterization.
    Rödiger A; Agne B; Baerenfaller K; Baginsky S
    Methods Mol Biol; 2014; 1072():275-88. PubMed ID: 24136529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of the mitochondrial and plastid proteomes of the moss Physcomitrella patens reveals protein macrocompartmentation and microcompartmentation.
    Mueller SJ; Lang D; Hoernstein SN; Lang EG; Schuessele C; Schmidt A; Fluck M; Leisibach D; Niegl C; Zimmer AD; Schlosser A; Reski R
    Plant Physiol; 2014 Apr; 164(4):2081-95. PubMed ID: 24515833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of leaf peroxisomes from Arabidopsis for organelle proteome analyses.
    Reumann S; Singhal R
    Methods Mol Biol; 2014; 1072():541-52. PubMed ID: 24136545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the Arabidopsis organelle proteome.
    Dunkley TP; Hester S; Shadforth IP; Runions J; Weimar T; Hanton SL; Griffin JL; Bessant C; Brandizzi F; Hawes C; Watson RB; Dupree P; Lilley KS
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6518-23. PubMed ID: 16618929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloroplast Isolation and Enrichment of Low-Abundance Proteins by Affinity Chromatography for Identification in Complex Proteomes.
    Bayer RG; Stael S; Teige M
    Methods Mol Biol; 2021; 2261():535-547. PubMed ID: 33421013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics.
    Fuchs P; Rugen N; Carrie C; Elsässer M; Finkemeier I; Giese J; Hildebrandt TM; Kühn K; Maurino VG; Ruberti C; Schallenberg-Rüdinger M; Steinbeck J; Braun HP; Eubel H; Meyer EH; Müller-Schüssele SJ; Schwarzländer M
    Plant J; 2020 Jan; 101(2):420-441. PubMed ID: 31520498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant cell organelle proteomics in response to abiotic stress.
    Hossain Z; Nouri MZ; Komatsu S
    J Proteome Res; 2012 Jan; 11(1):37-48. PubMed ID: 22029473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A proteomic analysis of organelles from Arabidopsis thaliana.
    Prime TA; Sherrier DJ; Mahon P; Packman LC; Dupree P
    Electrophoresis; 2000 Oct; 21(16):3488-99. PubMed ID: 11079568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in qualitative and quantitative plant membrane proteomics.
    Kota U; Goshe MB
    Phytochemistry; 2011 Jul; 72(10):1040-60. PubMed ID: 21367437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of organelle discovery upon sub-cellular protein localisation.
    Breckels LM; Gatto L; Christoforou A; Groen AJ; Lilley KS; Trotter MW
    J Proteomics; 2013 Aug; 88():129-40. PubMed ID: 23523639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. System, trends and perspectives of proteomics in dicot plants Part II: Proteomes of the complex developmental stages.
    Agrawal GK; Yonekura M; Iwahashi Y; Iwahashi H; Rakwal R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):125-36. PubMed ID: 15652803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of genuine residents of plant endomembrane organelles using isotope tagging and multivariate statistics.
    Lilley KS; Dunkley TP
    Methods Mol Biol; 2008; 432():373-87. PubMed ID: 18370031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of trans-golgi network proteins in Arabidopsis thaliana root tissue.
    Groen AJ; Sancho-Andrés G; Breckels LM; Gatto L; Aniento F; Lilley KS
    J Proteome Res; 2014 Feb; 13(2):763-76. PubMed ID: 24344820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical proteomics for subcellular proteome analysis.
    Zhu H; Tamura T; Hamachi I
    Curr Opin Chem Biol; 2019 Feb; 48():1-7. PubMed ID: 30170243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.