BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 17913634)

  • 1. Real-time dynamics of ribosome-ligand interaction by time-resolved chemical probing methods.
    Fabbretti A; Milon P; Giuliodori AM; Gualerzi CO; Pon CL
    Methods Enzymol; 2007; 430():45-58. PubMed ID: 17913634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 23 S rRNA environment of ribosomal protein L9 in the 50 S ribosomal subunit.
    Lieberman KR; Firpo MA; Herr AJ; Nguyenle T; Atkins JF; Gesteland RF; Noller HF
    J Mol Biol; 2000 Apr; 297(5):1129-43. PubMed ID: 10764578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA.
    Bauer G; Berens C; Projan SJ; Hillen W
    J Antimicrob Chemother; 2004 Apr; 53(4):592-9. PubMed ID: 14985271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of rRNA cleavage by complementary 1,10-phenanthroline-Cu(II)- and EDTA-Fe(II)-derivatized oligonucleotides.
    Bowen WS; Hill WE; Lodmell JS
    Methods; 2001 Nov; 25(3):344-50. PubMed ID: 11860288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Following the dynamics of changes in solvent accessibility of 16 S and 23 S rRNA during ribosomal subunit association using synchrotron-generated hydroxyl radicals.
    Nguyenle T; Laurberg M; Brenowitz M; Noller HF
    J Mol Biol; 2006 Jun; 359(5):1235-48. PubMed ID: 16725154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved hydroxyl-radical footprinting of RNA using Fe(II)-EDTA.
    Hampel KJ; Burke JM
    Methods; 2001 Mar; 23(3):233-9. PubMed ID: 11243836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved binding of azithromycin to Escherichia coli ribosomes.
    Petropoulos AD; Kouvela EC; Starosta AL; Wilson DN; Dinos GP; Kalpaxis DL
    J Mol Biol; 2009 Jan; 385(4):1179-92. PubMed ID: 19071138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the structure of ribosome assembly intermediates in vivo using DMS and hydroxyl radical footprinting.
    Hulscher RM; Bohon J; Rappé MC; Gupta S; D'Mello R; Sullivan M; Ralston CY; Chance MR; Woodson SA
    Methods; 2016 Jul; 103():49-56. PubMed ID: 27016143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping RNA regions in eukaryotic ribosomes that are accessible to methidiumpropyl-EDTA.Fe(II) and EDTA.Fe(II).
    Han H; Schepartz A; Pellegrini M; Dervan PB
    Biochemistry; 1994 Aug; 33(33):9831-44. PubMed ID: 8060991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chelate dynamics on water exchange reactions of paramagnetic aminopolycarboxylate complexes.
    Maigut J; Meier R; Zahl A; van Eldik R
    Inorg Chem; 2008 Jul; 47(13):5702-19. PubMed ID: 18510310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genesis of ribosome structure: how a protein generates RNA structure in real time.
    Woolstenhulme CJ; Hill WE
    J Mol Biol; 2009 Sep; 392(3):645-56. PubMed ID: 19563812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical probing of RNA in living cells.
    Wildauer M; Zemora G; Liebeg A; Heisig V; Waldsich C
    Methods Mol Biol; 2014; 1086():159-76. PubMed ID: 24136603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous rRNA molecules encoded by Streptomyces coelicolor M145 genome are all expressed and assembled into ribosomes.
    Kim HL; Shin E; Kim HM; Go H; Roh J; Bae J; Lee K
    J Microbiol Biotechnol; 2007 Oct; 17(10):1708-11. PubMed ID: 18156790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA Structure Analysis by Chemical Probing with DMS and CMCT.
    Andrade JM; Dos Santos RF; Arraiano CM
    Methods Mol Biol; 2020; 2106():209-223. PubMed ID: 31889260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific interactions of the L10(L12)4 ribosomal protein complex with mRNA, rRNA, and L11.
    Iben JR; Draper DE
    Biochemistry; 2008 Mar; 47(9):2721-31. PubMed ID: 18247578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural methods for studying IRES function.
    Kieft JS; Costantino DA; Filbin ME; Hammond J; Pfingsten JS
    Methods Enzymol; 2007; 430():333-71. PubMed ID: 17913644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper speciation by competing ligand exchange method using differential pulse anodic stripping voltammetry with ethylenediaminetetraacetic acid (EDTA) as competing ligand.
    Wang R; Chakrabarti CL
    Anal Chim Acta; 2008 May; 614(2):153-60. PubMed ID: 18420045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of ribosome turnover during growth of the haloalkaliphilic archaeon Natronococcus occultus.
    Nercessian D; Conde RD
    Res Microbiol; 2006 Sep; 157(7):625-8. PubMed ID: 16814992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-induced translation by the allosteric ribosome bearing an aptamer-fused rRNA.
    Yokoyama T; Suzuki T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):383-4. PubMed ID: 18029747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo dimethyl sulfate (DMS) footprinting via ligation-mediated polymerase chain reaction (LM-PCR).
    Carey MF; Peterson CL; Smale ST
    Cold Spring Harb Protoc; 2009 Sep; 2009(9):pdb.prot5278. PubMed ID: 20147263
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.