These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17913989)

  • 1. Sustained rhythmic activity in gap-junctionally coupled networks of model neurons depends on the diameter of coupled dendrites.
    Gansert J; Golowasch J; Nadim F
    J Neurophysiol; 2007 Dec; 98(6):3450-60. PubMed ID: 17913989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal transmission between gap-junctionally coupled passive cables is most effective at an optimal diameter.
    Nadim F; Golowasch J
    J Neurophysiol; 2006 Jun; 95(6):3831-43. PubMed ID: 16709724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of very fast oscillations in networks of axons coupled by gap junctions.
    Munro E; Börgers C
    J Comput Neurosci; 2010 Jun; 28(3):539-55. PubMed ID: 20387109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distal gap junctions and active dendrites can tune network dynamics.
    Saraga F; Ng L; Skinner FK
    J Neurophysiol; 2006 Mar; 95(3):1669-82. PubMed ID: 16339003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity.
    Hull MJ; Soffe SR; Willshaw DJ; Roberts A
    PLoS Comput Biol; 2015 May; 11(5):e1004240. PubMed ID: 25954930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of distal dendritic gap junctions in synchronization of mitral cell axonal output.
    Migliore M; Hines ML; Shepherd GM
    J Comput Neurosci; 2005; 18(2):151-61. PubMed ID: 15714267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The passive properties of dendrites modulate the propagation of slowly-varying firing rate in feedforward networks.
    Gao T; Deng B; Wang J; Wang J; Yi G
    Neural Netw; 2022 Jun; 150():377-391. PubMed ID: 35349914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures.
    Larkum ME; Rioult MG; Lüscher HR
    J Neurophysiol; 1996 Jan; 75(1):154-70. PubMed ID: 8822549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic range of vertebrate retina ganglion cells: importance of active dendrites and coupling by electrical synapses.
    Publio R; Ceballos CC; Roque AC
    PLoS One; 2012; 7(10):e48517. PubMed ID: 23144767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite.
    Chen WR; Shen GY; Shepherd GM; Hines ML; Midtgaard J
    J Neurophysiol; 2002 Nov; 88(5):2755-64. PubMed ID: 12424310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gap junctions, dendrites and resonances: a recipe for tuning network dynamics.
    Timofeeva Y; Coombes S; Michieletto D
    J Math Neurosci; 2013 Aug; 3(1):15. PubMed ID: 23945377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of spontaneous and self-sustained oscillations in networks connected through axo-axonal gap junctions.
    Maex R; De Schutter E
    Eur J Neurosci; 2007 Jun; 25(11):3347-58. PubMed ID: 17553003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further study of soma, dendrite, and axon excitation in single neurons.
    EYZAGUIRRE C; KUFFLER SW
    J Gen Physiol; 1955 Sep; 39(1):121-53. PubMed ID: 13252238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model of synchronized population bursts in electrically coupled interneurons containing active dendritic conductances.
    Traub RD
    J Comput Neurosci; 1995 Dec; 2(4):283-9. PubMed ID: 8746402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral information processing by spiking neurons: a theoretical model of the neural correlate of consciousness.
    Ebner M; Hameroff S
    Comput Intell Neurosci; 2011; 2011():247879. PubMed ID: 22046178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action potential initiation and propagation in rat neocortical pyramidal neurons.
    Stuart G; Schiller J; Sakmann B
    J Physiol; 1997 Dec; 505 ( Pt 3)(Pt 3):617-32. PubMed ID: 9457640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous electrical oscillations emerge from a coupled network: a study of the inferior olive using lentiviral knockdown of connexin36.
    Placantonakis DG; Bukovsky AA; Aicher SA; Kiem HP; Welsh JP
    J Neurosci; 2006 May; 26(19):5008-16. PubMed ID: 16687492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting synchronous and asynchronous network groupings of hippocampal interneurons coupled with dendritic gap junctions.
    Zahid T; Skinner FK
    Brain Res; 2009 Mar; 1262():115-29. PubMed ID: 19171126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions.
    Traub RD; Schmitz D; Jefferys JG; Draguhn A
    Neuroscience; 1999; 92(2):407-26. PubMed ID: 10408594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions.
    Lewis TJ; Rinzel J
    Network; 2000 Nov; 11(4):299-320. PubMed ID: 11128169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.