These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 1791452)
61. Effects of sublethal exposure to Bacillus thuringiensis var. israelensis on larval development and adult size in Aedes aegypti. Hare SG; Nasci RS J Am Mosq Control Assoc; 1986 Sep; 2(3):325-8. PubMed ID: 3507506 [TBL] [Abstract][Full Text] [Related]
62. Field trial of Bacillus thuringiensis H-14 (VCRC B-17) against Culex and Anopheles larvae. Balaraman K; Balasubramanian M; Jambulingam P Indian J Med Res; 1983 Jan; 77():38-43. PubMed ID: 6862558 [No Abstract] [Full Text] [Related]
63. Efficacy of Bacillus thuringiensis var. Kurstaki in the control of two mosquito species (Anopheles stephensi and Culex quinquefasciatus). Kumar AS; Moorthi M; Ramakrishnan N; Dhanapakiam P; Ramasamy VK; Rajeswari AR J Environ Biol; 2009 May; 30(3):433-5. PubMed ID: 20120473 [TBL] [Abstract][Full Text] [Related]
64. The killifish Rivulus marmoratus: a potential biocontrol agent for Aedes taeniorhynchus and brackish water Culex. Taylor DS; Ritchie SA; Johnson E J Am Mosq Control Assoc; 1992 Mar; 8(1):80-3. PubMed ID: 1583495 [TBL] [Abstract][Full Text] [Related]
65. Laboratory trials with Bacillus thuringiensis serotype H-14 in controlling mosquito larvae. Bekheit SS J Egypt Soc Parasitol; 1984 Jun; 14(1):71-6. PubMed ID: 6145746 [No Abstract] [Full Text] [Related]
66. Field evaluation of a formulation of Pseudomonas fluorescens against Culex quinquefasciatus larvae and pupae. Sadanandane C; Reddy CM; Prabakaran G; Balaraman K Acta Trop; 2003 Aug; 87(3):341-3. PubMed ID: 12875927 [TBL] [Abstract][Full Text] [Related]
67. Microbial flora in gut of Culex quinquefasciatus breeding in cess pits. Vasanthi V; Hoti SL Southeast Asian J Trop Med Public Health; 1992 Jun; 23(2):312-7. PubMed ID: 1439987 [TBL] [Abstract][Full Text] [Related]
68. Evaluation of Bactimos wettable powder, granules and briquets against mosquito larvae in Malaysia. Sulaiman S; Jeffery J; Sohadi AR; Yunus H; Busparani V; Majid R Acta Trop; 1990 May; 47(4):189-95. PubMed ID: 1973019 [TBL] [Abstract][Full Text] [Related]
69. Breeding water and mosquito strain as factors influencing susceptibility of Culex pipiens L. to Bacillus thuringiensis serotype H-14. Abou Bakr H; el-Husseini MM; Merdan AI J Egypt Soc Parasitol; 1986 Jun; 16(1):235-41. PubMed ID: 3722891 [No Abstract] [Full Text] [Related]
70. Assessment of combining biosynthesized silver nanoparticles using Gabarty A; Abas A; Salem HM; El-Sonbaty SM; Farghaly DS; Awad HA Int J Radiat Biol; 2021; 97(9):1299-1315. PubMed ID: 34032553 [TBL] [Abstract][Full Text] [Related]
71. Bacillus thuringiensis var. israelensis as a microbial control agent against adult and immature stages of the sandfly, Phlebotomus papatasi under laboratory conditions. Wahba MM; Labib IM; el Hamshary EM J Egypt Soc Parasitol; 1999 Aug; 29(2):587-97. PubMed ID: 10605508 [TBL] [Abstract][Full Text] [Related]
72. Lethal and sublethal effects of single and double applications of Bacillus thuringiensis variety kurstaki on spruce budworm (Lepidoptera: Tortricidae) larvae. Moreau G; Bauce E J Econ Entomol; 2003 Apr; 96(2):280-6. PubMed ID: 14994791 [TBL] [Abstract][Full Text] [Related]
73. Effect of certain formulations of the bacterial larvicide, Bacillus thuringiensis, serotype H-14 on Culex pipiens L. in Egypt. Merdan AI; el-Husseni MM; Abu-Bakr H; Rady MM J Egypt Soc Parasitol; 1991 Aug; 21(2):403-10. PubMed ID: 1875070 [No Abstract] [Full Text] [Related]
74. Amino acids in nectar enhance longevity of female Culex quinquefasciatus mosquitoes. Vrzal EM; Allan SA; Hahn DA J Insect Physiol; 2010 Nov; 56(11):1659-64. PubMed ID: 20609367 [TBL] [Abstract][Full Text] [Related]
75. Pilot scale production & evaluation of Bacillus thuringiensis H-14. Balaraman K; Bhatia MC; Hoti SL; Tripathi SC Indian J Med Res; 1986 May; 83():462-5. PubMed ID: 3733200 [No Abstract] [Full Text] [Related]
76. Culex saltanensis morphological redescription of the immature and adult stages. Laurito M; Visintin AM; Almirón WR J Am Mosq Control Assoc; 2008 Jun; 24(2):203-10. PubMed ID: 18666526 [TBL] [Abstract][Full Text] [Related]
77. Sub-lethal effects of a Bt-based bioinsecticide on the biological conditioning of Anticarsia gemmatalis. Fernandes FO; de Souza TD; Sanches AC; Dias NP; Desiderio JA; Polanczyk RA Ecotoxicology; 2021 Dec; 30(10):2071-2082. PubMed ID: 34549369 [TBL] [Abstract][Full Text] [Related]
78. Methacrylate embedding as a new technique for histopathological studies on the effect of Bacillus thuringiensis against Culex pipiens. Hussein MA; Bakr RF J Egypt Soc Parasitol; 1990 Jun; 20(1):197-201. PubMed ID: 2332647 [TBL] [Abstract][Full Text] [Related]
79. The influence of Bacillus sphaericus on the biology and histology of Phlebotomus papatasi. Wahba MM J Egypt Soc Parasitol; 2000 Apr; 30(1):315-23. PubMed ID: 10786042 [TBL] [Abstract][Full Text] [Related]
80. Impact of storage period & temperature on the larvicidal activity of bacterial pesticide formulations. Balaraman K; Hoti SL Indian J Med Res; 1984 Jul; 80():71-3. PubMed ID: 6519722 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]