BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 17914792)

  • 1. Interference of ascorbic acid in the sensitive detection of dopamine by a nonoxidative sensing approach.
    Ali SR; Parajuli RR; Ma Y; Balogun Y; He H
    J Phys Chem B; 2007 Oct; 111(42):12275-81. PubMed ID: 17914792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine.
    Ali SR; Ma Y; Parajuli RR; Balogun Y; Lai WY; He H
    Anal Chem; 2007 Mar; 79(6):2583-7. PubMed ID: 17286387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination of dopamine and ascorbic acid using carbon nanotube fiber microelectrodes.
    Viry L; Derré A; Poulin P; Kuhn A
    Phys Chem Chem Phys; 2010 Sep; 12(34):9993-5. PubMed ID: 20623074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical quartz crystal microbalance study of covalent tethering of carboxylated thiol to polyaniline for electrocatalyzed oxidation of ascorbic acid in neutral aqueous solution.
    Su Z; Huang J; Xie Q; Fang Z; Zhou C; Zhou Q; Yao S
    Phys Chem Chem Phys; 2009 Oct; 11(40):9050-61. PubMed ID: 19812825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A selective dopamine biosensor based on AgCl@polyaniline core-shell nanocomposites.
    Yan W; Feng X; Chen X; Li X; Zhu JJ
    Bioelectrochemistry; 2008 Feb; 72(1):21-7. PubMed ID: 17826362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective detection of dopamine in the presence of ascorbic acid by use of glassy-carbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated beta-cyclodextrin.
    Yin T; Wei W; Zeng J
    Anal Bioanal Chem; 2006 Dec; 386(7-8):2087-94. PubMed ID: 17115144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced sensitivity for biosensors: multiple functions of DNA-wrapped single-walled carbon nanotubes in self-doped polyaniline nanocomposites.
    Ma Y; Ali SR; Dodoo AS; He H
    J Phys Chem B; 2006 Aug; 110(33):16359-65. PubMed ID: 16913764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Nonoxidative Electrochemical Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine: A Review.
    Ali SR; Parajuli RR; Balogun Y; Ma Y; He H
    Sensors (Basel); 2008 Dec; 8(12):8423-8452. PubMed ID: 27873994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of dopamine in the presence of ascorbic acid using poly(3,5-dihydroxy benzoic acid) film modified electrode.
    Hou S; Zheng N; Feng H; Li X; Yuan Z
    Anal Biochem; 2008 Oct; 381(2):179-84. PubMed ID: 18455490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of dopamine in the presence of ascorbic acid by poly(styrene sulfonic acid) sodium salt/single-wall carbon nanotube film modified glassy carbon electrode.
    Zhang Y; Cai Y; Su S
    Anal Biochem; 2006 Mar; 350(2):285-91. PubMed ID: 16457772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive and selective method to detect dopamine in the presence of ascorbic acid by a new polymeric composite film.
    Xiao Y; Guo C; Li CM; Li Y; Zhang J; Xue R; Zhang S
    Anal Biochem; 2007 Dec; 371(2):229-37. PubMed ID: 17720131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double recognition of dopamine based on a boronic acid functionalized poly(aniline-co-anthranilic acid)-molecularly imprinted polymer composite.
    Gu L; Jiang X; Liang Y; Zhou T; Shi G
    Analyst; 2013 Sep; 138(18):5461-9. PubMed ID: 23884110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous determination of dopamine, ascorbic acid and uric acid at poly (Evans Blue) modified glassy carbon electrode.
    Lin L; Chen J; Yao H; Chen Y; Zheng Y; Lin X
    Bioelectrochemistry; 2008 Jun; 73(1):11-7. PubMed ID: 18417426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid.
    Thiagarajan S; Tsai TH; Chen SM
    Biosens Bioelectron; 2009 Apr; 24(8):2712-5. PubMed ID: 19162467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid.
    Ambrosi A; Morrin A; Smyth MR; Killard AJ
    Anal Chim Acta; 2008 Feb; 609(1):37-43. PubMed ID: 18243871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(aniline boronic acid)-based conductimetric sensor of dopamine.
    Fabre B; Taillebois L
    Chem Commun (Camb); 2003 Dec; (24):2982-3. PubMed ID: 14703818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical and electrochemical detection of saccharides with poly(aniline-co-3-aminobenzeneboronic acid) prepared from enzymatic polymerization.
    Huh P; Kim SC; Kim Y; Wang Y; Singh J; Kumar J; Samuelson LA; Kim BS; Jo NJ; Lee JO
    Biomacromolecules; 2007 Nov; 8(11):3602-7. PubMed ID: 17918994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective voltammetric detection of dopamine in the presence of ascorbate.
    Arrigan DW; Ghita M; Beni V
    Chem Commun (Camb); 2004 Mar; (6):732-3. PubMed ID: 15010804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of poly(anilineboronic acid) nanofibers for electrochemical detection of glucose.
    Li G; Li Y; Peng H; Chen K
    Macromol Rapid Commun; 2011 Aug; 32(15):1195-9. PubMed ID: 21692122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive fluorescent responses of water-soluble, zwitterionic, boronic acid-bearing, regioregular head-to-tail polythiophene to biological species.
    Xue C; Cai F; Liu H
    Chemistry; 2008; 14(5):1648-53. PubMed ID: 18041796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.