BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17914795)

  • 1. Ca2+ selectivity of the sarcoplasmic reticulum Ca2+-ATPase at the enzyme-water interface and in the Ca2+ entrance channel.
    Xiang F; Cukier RI; Bu Y
    J Phys Chem B; 2007 Oct; 111(42):12282-93. PubMed ID: 17914795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium binding to the transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase: insights from molecular modeling.
    Costa V; Carloni P
    Proteins; 2003 Jan; 50(1):104-13. PubMed ID: 12471603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dimeric form of Ca2+-ATPase is involved in Ca2+ transport in the sarcoplasmic reticulum.
    Ushimaru M; Fukushima Y
    Biochem J; 2008 Sep; 414(3):357-61. PubMed ID: 18471093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of monovalent cations on Ca2+ uptake by skeletal and cardiac muscle sarcoplasmic reticulum.
    Beca S; Aschar-Sobbi R; Ponjevic D; Winkfein RJ; Kargacin ME; Kargacin GJ
    Arch Biochem Biophys; 2009 Oct; 490(2):110-7. PubMed ID: 19706285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in in vitro function and protein oxidation of rat sarcoplasmic reticulum Ca2+-ATPase during recovery from high-intensity exercise.
    Matsunaga S; Mishima T; Yamada T; Inashima S; Wada M
    Exp Physiol; 2008 Mar; 93(3):426-33. PubMed ID: 18156168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of some antioxidants on sarcoplasmic reticulum Ca2+-ATPase activity from rabbit skeletal muscle.
    Strosová M; Karlovská J; Galbavý P; Horáková L
    Neuro Endocrinol Lett; 2006 Dec; 27 Suppl 2():164-7. PubMed ID: 17159806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation of Ca2+ from sarcoplasmic reticulum Ca2+-ATPase and changes in fluorescence of optically selected Trp residues. Effects of KCl and NaCl and implications for substeps in Ca2+ dissociation.
    Champeil P; Henao F; de Foresta B
    Biochemistry; 1997 Oct; 36(40):12383-93. PubMed ID: 9315879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump.
    Møller JV; Olesen C; Winther AM; Nissen P
    Q Rev Biophys; 2010 Nov; 43(4):501-66. PubMed ID: 20809990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of inhibition of Ca2+-transport activity of sarcoplasmic reticulum Ca2+-ATPase by anisodamine.
    Pang Y; Li X; Qin S; Zhang H; Chen J
    Indian J Biochem Biophys; 2006 Dec; 43(6):351-9. PubMed ID: 17285799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysophosphatidylcholine modulates catalytically important motions of the Ca-ATPase phosphorylation domain.
    Hunter GW; Bigelow DJ; Squier TC
    Biochemistry; 1999 Apr; 38(14):4604-12. PubMed ID: 10194382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the calcium pump with a bound ATP analogue.
    Toyoshima C; Mizutani T
    Nature; 2004 Jul; 430(6999):529-35. PubMed ID: 15229613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational changes in sarcoplasmic reticulum Ca(2+)-ATPase mutants: effect of mutations either at Ca(2+)-binding site II or at tryptophan 552 in the cytosolic domain.
    Lenoir G; Jaxel C; Picard M; le Maire M; Champeil P; Falson P
    Biochemistry; 2006 Apr; 45(16):5261-70. PubMed ID: 16618114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T; Lin YL; Dudev M; Lim C
    J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of proton binding to the sarcoplasmic reticulum Ca-ATPase in the E1 state.
    Fibich A; Janko K; Apell HJ
    Biophys J; 2007 Nov; 93(9):3092-104. PubMed ID: 17615289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protonation and hydrogen bonding of Ca2+ site residues in the E2P phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+-ATPase studied by a combination of infrared spectroscopy and electrostatic calculations.
    Andersson J; Hauser K; Karjalainen EL; Barth A
    Biophys J; 2008 Jan; 94(2):600-11. PubMed ID: 17890386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitors bound to Ca(2+)-free sarcoplasmic reticulum Ca(2+)-ATPase lock its transmembrane region but not necessarily its cytosolic region, revealing the flexibility of the loops connecting transmembrane and cytosolic domains.
    Montigny C; Picard M; Lenoir G; Gauron C; Toyoshima C; Champeil P
    Biochemistry; 2007 Dec; 46(51):15162-74. PubMed ID: 18052080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel.
    Boda D; Valiskó M; Eisenberg B; Nonner W; Henderson D; Gillespie D
    J Chem Phys; 2006 Jul; 125(3):34901. PubMed ID: 16863379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The variety of cytosolic calcium responses and possible roles of PLC and PKC.
    Kang M; Othmer HG
    Phys Biol; 2007 Dec; 4(4):325-43. PubMed ID: 18185010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetic state is a strong regulator of sarcoplasmic reticulum Ca2+ loss in cardiac muscle: different efficiencies of different energy sources.
    Kuum M; Kaasik A; Joubert F; Ventura-Clapier R; Veksler V
    Cardiovasc Res; 2009 Jul; 83(1):89-96. PubMed ID: 19389722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of Cation Binding to the Sarcoendoplasmic Reticulum Calcium ATPase Pump and Impacts on Enzyme Function.
    Sun B; Stewart BD; Kucharski AN; Kekenes-Huskey PM
    J Chem Theory Comput; 2019 Apr; 15(4):2692-2705. PubMed ID: 30807147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.