BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1015 related articles for article (PubMed ID: 17914867)

  • 1. Strain and near attack conformers in enzymic thiamin catalysis: X-ray crystallographic snapshots of bacterial transketolase in covalent complex with donor ketoses xylulose 5-phosphate and fructose 6-phosphate, and in noncovalent complex with acceptor aldose ribose 5-phosphate.
    Asztalos P; Parthier C; Golbik R; Kleinschmidt M; Hübner G; Weiss MS; Friedemann R; Wille G; Tittmann K
    Biochemistry; 2007 Oct; 46(43):12037-52. PubMed ID: 17914867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the reduced Schiff-base intermediate complex of transaldolase B from Escherichia coli: mechanistic implications for class I aldolases.
    Jia J; Schörken U; Lindqvist Y; Sprenger GA; Schneider G
    Protein Sci; 1997 Jan; 6(1):119-24. PubMed ID: 9007983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of coenzyme modification on the structural and catalytic properties of wild-type transketolase and of the variant E418A from Saccharomyces cerevisiae.
    Golbik R; Meshalkina LE; Sandalova T; Tittmann K; Fiedler E; Neef H; König S; Kluger R; Kochetov GA; Schneider G; Hübner G
    FEBS J; 2005 Mar; 272(6):1326-42. PubMed ID: 15752351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New evidence for cofactor's amino group function in thiamin catalysis by transketolase.
    Meshalkina LE; Kochetov GA; Brauer J; Hübner G; Tittmann K; Golbik R
    Biochem Biophys Res Commun; 2008 Feb; 366(3):692-7. PubMed ID: 18070592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of catalytically important residues in yeast transketolase.
    Wikner C; Nilsson U; Meshalkina L; Udekwu C; Lindqvist Y; Schneider G
    Biochemistry; 1997 Dec; 36(50):15643-9. PubMed ID: 9398292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Snapshot of a key intermediate in enzymatic thiamin catalysis: crystal structure of the alpha-carbanion of (alpha,beta-dihydroxyethyl)-thiamin diphosphate in the active site of transketolase from Saccharomyces cerevisiae.
    Fiedler E; Thorell S; Sandalova T; Golbik R; König S; Schneider G
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):591-5. PubMed ID: 11773632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new erythrose 4-phosphate dehydrogenase coupled assay for transketolase.
    Naula C; Alibu VP; Brock JM; Veitch NJ; Burchmore RJ; Barrett MP
    J Biochem Biophys Methods; 2008 Apr; 70(6):1185-7. PubMed ID: 18053578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examination of substrate binding in thiamin diphosphate-dependent transketolase by protein crystallography and site-directed mutagenesis.
    Nilsson U; Meshalkina L; Lindqvist Y; Schneider G
    J Biol Chem; 1997 Jan; 272(3):1864-9. PubMed ID: 8999873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sweet siblings with different faces: the mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data.
    Tittmann K
    Bioorg Chem; 2014 Dec; 57():263-280. PubMed ID: 25267444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates.
    Schütz A; Golbik R; König S; Hübner G; Tittmann K
    Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and kinetic studies on native intermediates and an intermediate analogue in benzoylformate decarboxylase reveal a least motion mechanism with an unprecedented short-lived predecarboxylation intermediate.
    Bruning M; Berheide M; Meyer D; Golbik R; Bartunik H; Liese A; Tittmann K
    Biochemistry; 2009 Apr; 48(15):3258-68. PubMed ID: 19182954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 A resolution.
    Nikkola M; Lindqvist Y; Schneider G
    J Mol Biol; 1994 May; 238(3):387-404. PubMed ID: 8176731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 1.9 A resolution structure of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate reductoisomerase, a potential drug target.
    Henriksson LM; Björkelid C; Mowbray SL; Unge T
    Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):807-13. PubMed ID: 16790937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibacterial Target DXP Synthase Catalyzes the Cleavage of d-Xylulose 5-Phosphate: a Study of Ketose Phosphate Binding and Ketol Transfer Reaction.
    Johnston ML; Bonett EM; DeColli AA; Freel Meyers CL
    Biochemistry; 2022 Sep; 61(17):1810-1823. PubMed ID: 35998648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of nucleotidylated histidine-166 of galactose-1-phosphate uridylyltransferase provides insight into phosphoryl group transfer.
    Wedekind JE; Frey PA; Rayment I
    Biochemistry; 1996 Sep; 35(36):11560-9. PubMed ID: 8794735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical studies on the common catalytic mechanism of transketolase by using simplified models.
    Sheng X; Liu Y; Liu C
    J Mol Graph Model; 2013 Feb; 39():23-8. PubMed ID: 23220278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural diversity within the mononuclear and binuclear active sites of N-acetyl-D-glucosamine-6-phosphate deacetylase.
    Hall RS; Brown S; Fedorov AA; Fedorov EV; Xu C; Babbitt PC; Almo SC; Raushel FM
    Biochemistry; 2007 Jul; 46(27):7953-62. PubMed ID: 17567048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of human transketolase and new insights into its mode of action.
    Mitschke L; Parthier C; Schröder-Tittmann K; Coy J; Lüdtke S; Tittmann K
    J Biol Chem; 2010 Oct; 285(41):31559-70. PubMed ID: 20667822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and biochemical characterizations of Thermus thermophilus HB8 transketolase producing a heptulose.
    Yoshihara A; Takamatsu Y; Mochizuki S; Yoshida H; Masui R; Izumori K; Kamitori S
    Appl Microbiol Biotechnol; 2023 Jan; 107(1):233-245. PubMed ID: 36441206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of YihS in complex with D-mannose: structural annotation of Escherichia coli and Salmonella enterica yihS-encoded proteins to an aldose-ketose isomerase.
    Itoh T; Mikami B; Hashimoto W; Murata K
    J Mol Biol; 2008 Apr; 377(5):1443-59. PubMed ID: 18328504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.