BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1791487)

  • 1. Bacteriochlorophyll-a as photosensitizer for photodynamic treatment of transplantable murine tumors.
    Henderson BW; Sumlin AB; Owczarczak BL; Dougherty TJ
    J Photochem Photobiol B; 1991 Sep; 10(4):303-13. PubMed ID: 1791487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen limitation of direct tumor cell kill during photodynamic treatment of a murine tumor model.
    Henderson BW; Fingar VH
    Photochem Photobiol; 1989 Mar; 49(3):299-304. PubMed ID: 2525260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and initial characterization of mouse tumor cells resistant to porphyrin-mediated photodynamic therapy.
    Luna MC; Gomer CJ
    Cancer Res; 1991 Aug; 51(16):4243-9. PubMed ID: 1831066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel photodynamic effects of a benzophenothiazine on two different murine sarcomas.
    Cincotta L; Foley JW; MacEachern T; Lampros E; Cincotta AH
    Cancer Res; 1994 Mar; 54(5):1249-58. PubMed ID: 8118813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of different rat tumour strains to photodynamic treatment with chlorin e6.
    Kostenich GA; Zhuravkin IN; Furmanchuk AV; Zhavrid EA
    J Photochem Photobiol B; 1993 Feb; 17(2):187-94. PubMed ID: 8459320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo stability and photodynamic efficacy of fluorinated bacteriopurpurinimides derived from bacteriochlorophyll-a.
    Gryshuk AL; Chen Y; Potter W; Ohulchansky T; Oseroff A; Pandey RK
    J Med Chem; 2006 Mar; 49(6):1874-81. PubMed ID: 16539373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug and light dose dependence of photodynamic therapy: a study of tumor cell clonogenicity and histologic changes.
    Fingar VH; Potter WR; Henderson BW
    Photochem Photobiol; 1987 May; 45(5):643-50. PubMed ID: 2955431
    [No Abstract]   [Full Text] [Related]  

  • 8. Wavelength-dependent effects of benzoporphyrin derivative monoacid ring A in vivo and in vitro.
    Waterfield EM; Renke ME; Smits CB; Gervais MD; Bower RD; Stonefield MS; Levy JG
    Photochem Photobiol; 1994 Oct; 60(4):383-7. PubMed ID: 7991665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo and in vitro photodynamic studies with benzochlorin iminium salts delivered by a lipid emulsion.
    Garbo GM; Fingar VH; Wieman TJ; Noakes EB; Haydon PS; Cerrito PB; Kessel DH; Morgan AR
    Photochem Photobiol; 1998 Oct; 68(4):561-8. PubMed ID: 9796439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosensitization of murine tumor, vasculature and skin by 5-aminolevulinic acid-induced porphyrin.
    Henderson BW; Vaughan L; Bellnier DA; van Leengoed H; Johnson PG; Oseroff AR
    Photochem Photobiol; 1995 Oct; 62(4):780-9. PubMed ID: 7480155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of fluence rate on tumor and normal tissue responses to photodynamic therapy.
    Sitnik TM; Henderson BW
    Photochem Photobiol; 1998 Apr; 67(4):462-6. PubMed ID: 9559590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of cross-resistance to a range of photosensitizers, hyperthermia and UV light in two radiation-induced fibrosarcoma cell strains resistant to photodynamic therapy in vitro.
    Mayhew S; Vernon DI; Schofield J; Griffiths J; Brown SB
    Photochem Photobiol; 2001 Jan; 73(1):39-46. PubMed ID: 11202364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Verapamil and hematoporphyrin derivative for tumour destruction by photodynamic therapy.
    Gossner L; Wittke H; Warzecha A; Sroka R; Ernst H; Meier M; Ell C
    Br J Cancer; 1991 Jul; 64(1):84-6. PubMed ID: 1830212
    [No Abstract]   [Full Text] [Related]  

  • 14. On the photodynamic therapy action spectrum of zinc phthalocyanine tetrasulphonic acid in vivo.
    Griffiths J; Cruse-Sawyer J; Wood SR; Schofield J; Brown SB; Dixon B
    J Photochem Photobiol B; 1994 Aug; 24(3):195-9. PubMed ID: 7646616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of charge-coupled device technology for measurement of laser light and fluorescence distribution in tumors for photodynamic therapy.
    Straight RC; Benner RE; McClane RW; Go PM; Yoon G; Dixon JA
    Photochem Photobiol; 1991 Jun; 53(6):787-96. PubMed ID: 1886937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo resistance to photofrin-mediated photodynamic therapy in radiation-induced fibrosarcoma cells resistant to in vitro Photofrin-mediated photodynamic therapy.
    Adams K; Rainbow AJ; Wilson BC; Singh G
    J Photochem Photobiol B; 1999 Apr; 49(2-3):136-41. PubMed ID: 10392463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the in vivo and in vitro photosensitizing capabilities of uroporphyrin I compared to photofrin II.
    Nelson JS; Sun CH; Berns MW
    Lasers Surg Med; 1986; 6(2):131-6. PubMed ID: 2941630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative analysis of silicon phthalocyanine photosensitizers for in vivo photodynamic therapy of RIF-1 tumors in C3H mice.
    Anderson CY; Freye K; Tubesing KA; Li YS; Kenney ME; Mukhtar H; Elmets CA
    Photochem Photobiol; 1998 Mar; 67(3):332-6. PubMed ID: 9523532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue uptake, distribution, and potency of the photoactivatable dye chloroaluminum sulfonated phthalocyanine in mice bearing transplantable tumors.
    Chan WS; Marshall JF; Lam GY; Hart IR
    Cancer Res; 1988 Jun; 48(11):3040-4. PubMed ID: 3284641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photodynamic therapy using a protoporphyrinogen oxidase inhibitor.
    Fingar VH; Wieman TJ; McMahon KS; Haydon PS; Halling BP; Yuhas DA; Winkelman JW
    Cancer Res; 1997 Oct; 57(20):4551-6. PubMed ID: 9377568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.