These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17915013)

  • 21. Application of information theory to a three-body coarse-grained representation of proteins in the PDB: insights into the structural and evolutionary roles of residues in protein structure.
    Thompson JJ; Tabatabaei Ghomi H; Lill MA
    Proteins; 2014 Dec; 82(12):3450-65. PubMed ID: 25269778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated analysis of residue coevolution and protein structures capture key protein sectors in HIV-1 proteins.
    Zhao Y; Wang Y; Gao Y; Li G; Huang J
    PLoS One; 2015; 10(2):e0117506. PubMed ID: 25671429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA-protein coevolution study of Gemin5 uncovers the role of the PXSS motif of RBS1 domain for RNA binding.
    Francisco-Velilla R; Embarc-Buh A; Rangel-Guerrero S; Basu S; Kundu S; Martinez-Salas E
    RNA Biol; 2020 Sep; 17(9):1331-1341. PubMed ID: 32476560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlations among amino acid sites in bHLH protein domains: an information theoretic analysis.
    Atchley WR; Wollenberg KR; Fitch WM; Terhalle W; Dress AW
    Mol Biol Evol; 2000 Jan; 17(1):164-78. PubMed ID: 10666716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detecting coevolution without phylogenetic trees? Tree-ignorant metrics of coevolution perform as well as tree-aware metrics.
    Caporaso JG; Smit S; Easton BC; Hunter L; Huttley GA; Knight R
    BMC Evol Biol; 2008 Dec; 8():327. PubMed ID: 19055758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coev-web: a web platform designed to simulate and evaluate coevolving positions along a phylogenetic tree.
    Dib L; Meyer X; Artimo P; Ioannidis V; Stockinger H; Salamin N
    BMC Bioinformatics; 2015 Nov; 16():394. PubMed ID: 26597459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel empirical mutual information approach to identify co-evolving amino acid positions of influenza A viruses.
    Gong YN; Chen GW; Suchard MA
    Comput Biol Chem; 2012 Aug; 39():20-8. PubMed ID: 22858722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ACES: A co-evolution simulator generates co-varying protein and nucleic acid sequences.
    Camenares D
    J Bioinform Comput Biol; 2020 Dec; 18(6):2050039. PubMed ID: 33215964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory.
    Di Giulio M
    J Theor Biol; 2016 Jun; 399():134-40. PubMed ID: 27067244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein-protein interactions leave evolutionary footprints: High molecular coevolution at the core of interfaces.
    Teppa E; Zea DJ; Marino-Buslje C
    Protein Sci; 2017 Dec; 26(12):2438-2444. PubMed ID: 28980349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction.
    Dunn SD; Wahl LM; Gloor GB
    Bioinformatics; 2008 Feb; 24(3):333-40. PubMed ID: 18057019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coevolving residues of (beta/alpha)(8)-barrel proteins play roles in stabilizing active site architecture and coordinating protein dynamics.
    Shen H; Xu F; Hu H; Wang F; Wu Q; Huang Q; Wang H
    J Struct Biol; 2008 Dec; 164(3):281-92. PubMed ID: 18838123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of functionally important amino acid sequences in cobra venom factor using human C3/Cobra venom factor hybrid proteins.
    Hew BE; Fritzinger DC; Pangburn MK; Vogel CW
    Toxicon; 2019 Sep; 167():106-116. PubMed ID: 31207349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coevolutionary patterns in cytochrome c oxidase subunit I depend on structural and functional context.
    Wang ZO; Pollock DD
    J Mol Evol; 2007 Nov; 65(5):485-95. PubMed ID: 17955155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses.
    Fares MA; Travers SA
    Genetics; 2006 May; 173(1):9-23. PubMed ID: 16547113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An amino acid map of inter-residue contact energies using metric multi-dimensional scaling.
    Rakshit S; Ananthasuresh GK
    J Theor Biol; 2008 Jan; 250(2):291-7. PubMed ID: 17981305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CSmetaPred: a consensus method for prediction of catalytic residues.
    Choudhary P; Kumar S; Bachhawat AK; Pandit SB
    BMC Bioinformatics; 2017 Dec; 18(1):583. PubMed ID: 29273005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-based rebuilding of coevolutionary information reveals functional modules in rhodopsin structure.
    Park K; Kim D
    Biochim Biophys Acta; 2012 Dec; 1824(12):1484-9. PubMed ID: 22684088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detecting groups of coevolving positions in a molecule: a clustering approach.
    Dutheil J; Galtier N
    BMC Evol Biol; 2007 Nov; 7():242. PubMed ID: 18053141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of the residue-residue coevolution network and the functionally important residues in proteins.
    Lee BC; Park K; Kim D
    Proteins; 2008 Aug; 72(3):863-72. PubMed ID: 18275083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.