BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

703 related articles for article (PubMed ID: 17915240)

  • 21. Photobleaching-based flow measurement in a commercial capillary electrophoresis chip instrument.
    Wang GR; Sas I; Jiang H; Janzen WP; Hodge CN
    Electrophoresis; 2008 Mar; 29(6):1253-63. PubMed ID: 18297657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In-line preconcentration of oxidized and reduced glutathione in capillary zone electrophoresis using transient isotachophoresis under strong counter-electroosmotic flow.
    Yan N; Zhu Z; Ding N; Zhou L; Dong Y; Chen X
    J Chromatogr A; 2009 Dec; 1216(49):8665-70. PubMed ID: 19863963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucose microfluidic biosensors based on immobilizing glucose oxidase in poly(dimethylsiloxane) electrophoretic microchips.
    Zhang Q; Xu JJ; Chen HY
    J Chromatogr A; 2006 Nov; 1135(1):122-6. PubMed ID: 17046001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polyurethane from biosource as a new material for fabrication of microfluidic devices by rapid prototyping.
    Piccin E; Coltro WK; Fracassi da Silva JA; Neto SC; Mazo LH; Carrilho E
    J Chromatogr A; 2007 Nov; 1173(1-2):151-8. PubMed ID: 17964580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of the electroosmotic flow as a means to propel the mobile phase in capillary electrochromatography in view of further miniaturization of capillary electrochromatography systems.
    Szekely L; Freitag R
    Electrophoresis; 2005 May; 26(10):1928-39. PubMed ID: 15832304
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of surfactants for dynamic surface modification of poly(dimethylsiloxane) microchips.
    García CD; Dressen BM; Henderson A; Henry CS
    Electrophoresis; 2005 Feb; 26(3):703-9. PubMed ID: 15690423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electroosmotic pump-assisted capillary electrophoresis of proteins.
    Xu L; Dong XY; Sun Y
    J Chromatogr A; 2009 Aug; 1216(32):6071-6. PubMed ID: 19576588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of PVP on the electroosmotic mobility of wet-etched glass microchannels.
    Milanova D; Chambers RD; Bahga SS; Santiago JG
    Electrophoresis; 2012 Nov; 33(21):3259-62. PubMed ID: 23065690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electroosmotic flow in capillary channels filled with nonconstant viscosity electrolytes: exact solution of the Navier-Stokes equation.
    Otevrel M; Klepárník K
    Electrophoresis; 2002 Oct; 23(20):3574-82. PubMed ID: 12412127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-sensitivity microchip electrophoresis determination of inorganic anions and oxalate in atmospheric aerosols with adjustable selectivity and conductivity detection.
    Noblitt SD; Schwandner FM; Hering SV; Collett JL; Henry CS
    J Chromatogr A; 2009 Feb; 1216(9):1503-10. PubMed ID: 19162269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent innovations in protein separation on microchips by electrophoretic methods: an update.
    Tran NT; Ayed I; Pallandre A; Taverna M
    Electrophoresis; 2010 Jan; 31(1):147-73. PubMed ID: 20014053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of SU-8 based microchip electrophoresis with integrated electrochemical detection for neurotransmitters.
    Castaño-Alvarez M; Fernández-Abedul MT; Costa-García A; Agirregabiria M; Fernández LJ; Ruano-López JM; Barredo-Presa B
    Talanta; 2009 Nov; 80(1):24-30. PubMed ID: 19782188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Top-down analysis of basic proteins by microchip capillary electrophoresis mass spectrometry.
    Akashi S; Suzuki K; Arai A; Yamada N; Suzuki E; Hirayama K; Nakamura S; Nishimura Y
    Rapid Commun Mass Spectrom; 2006; 20(12):1932-8. PubMed ID: 16715472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pressure-assisted capillary electrophoresis mass spectrometry using combination of polarity reversion and electroosmotic flow for metabolomics anion analysis.
    Harada K; Fukusaki E; Kobayashi A
    J Biosci Bioeng; 2006 May; 101(5):403-9. PubMed ID: 16781469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanomaterials and chip-based nanostructures for capillary electrophoretic separations of DNA.
    Lin YW; Huang MF; Chang HT
    Electrophoresis; 2005 Jan; 26(2):320-30. PubMed ID: 15657878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A two-step method for rapid characterization of electroosmotic flows in capillary electrophoresis.
    Zhang W; He M; Yuan T; Xu W
    Electrophoresis; 2017 Dec; 38(24):3130-3135. PubMed ID: 28869669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid inorganic ion analysis using quantitative microchip capillary electrophoresis.
    Vrouwe EX; Luttge R; Olthuis W; van den Berg A
    J Chromatogr A; 2006 Jan; 1102(1-2):287-93. PubMed ID: 16310794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a microfabricated palladium decoupler/electrochemical detector for microchip capillary electrophoresis using a hybrid glass/poly(dimethylsiloxane) device.
    Lacher NA; Lunte SM; Martin RS
    Anal Chem; 2004 May; 76(9):2482-91. PubMed ID: 15117187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coated microfluidic devices for improved chiral separations in microchip electrophoresis.
    Ludwig M; Belder D
    Electrophoresis; 2003 Aug; 24(15):2481-6. PubMed ID: 12900859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of electroosmotic flow in capillary electrochromatography.
    Wen E; Rathore AS; Horváth C
    Electrophoresis; 2001 Oct; 22(17):3720-7. PubMed ID: 11699910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.