These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 17915694)
1. Rapid determination of phenolic compounds in water samples by alternating-current oscillopolarographic titration. Xiao JP; Wang XF; Zhou QX; Fan XY; Su XF; Bai HH; Duan HJ J Environ Sci (China); 2007; 19(5):622-7. PubMed ID: 17915694 [TBL] [Abstract][Full Text] [Related]
2. Determination of glyphosate in water samples by alternating-current oscillopolarographic titration. Xiao J; Zhou Q; Yang B; Wang Z Anal Sci; 2004 Oct; 20(10):1415-8. PubMed ID: 15524193 [TBL] [Abstract][Full Text] [Related]
3. Determination of total phenols in environmental wastewater by flow-injection analysis with a biamperometric detector. Zhao C; Song JF; Zhang JC Anal Bioanal Chem; 2002 Oct; 374(3):498-504. PubMed ID: 12373400 [TBL] [Abstract][Full Text] [Related]
4. Molecularly imprinted polymers for dispersive solid-phase extraction of phenolic compounds in aqueous samples coupled with capillary electrophoresis. Lu W; Ming W; Zhang X; Chen L Electrophoresis; 2016 Oct; 37(19):2487-2495. PubMed ID: 27436547 [TBL] [Abstract][Full Text] [Related]
5. Determination of the phenolic-group capacities of humic substances by non-aqueous titration technique. Kirishima A; Ohnishi T; Sato N; Tochiyama O Talanta; 2009 Jul; 79(2):446-53. PubMed ID: 19559903 [TBL] [Abstract][Full Text] [Related]
6. Dispersive liquid-liquid microextraction for four phenolic environmental estrogens in water samples followed by determination using capillary electrophoresis. Liu J; Lu W; Liu H; Wu X; Li J; Chen L Electrophoresis; 2016 Oct; 37(19):2502-2508. PubMed ID: 27067023 [TBL] [Abstract][Full Text] [Related]
7. Determination of phenolic pollutants in drinking water by capillary electrophoresis in the sample stacking mode. Rodríguez I; Turnes MI; Bollaín MH; Mejuto MC; Cela R J Chromatogr A; 1997 Aug; 778(1-2):279-88. PubMed ID: 9299741 [TBL] [Abstract][Full Text] [Related]
8. Determination of phenols in waters by stir membrane liquid-liquid-liquid microextraction coupled to liquid chromatography with ultraviolet detection. Alcudia-León MC; Lucena R; Cárdenas S; Valcárcel M J Chromatogr A; 2011 Apr; 1218(16):2176-81. PubMed ID: 21392772 [TBL] [Abstract][Full Text] [Related]
9. [Branch-specific detection of phenols and assessment of ground water solubility]. Fischer F; Kerndorff H; Kühn S Schriftenr Ver Wasser Boden Lufthyg; 2000; 107():I-X, 1-108. PubMed ID: 11225284 [TBL] [Abstract][Full Text] [Related]
10. Development of a cloud point extraction method for the determination of phenolic compounds in environmental water samples coupled with high-performance liquid chromatography. Ma H; Mu F; Fan S; Zhou X; Jia Q J Sep Sci; 2012 Sep; 35(18):2484-90. PubMed ID: 22930563 [TBL] [Abstract][Full Text] [Related]
11. Determination of phenols with ion chromatography-online electrochemical derivatization based on porous electrode-fluorescence detection. Wu S; Yang B; Xi L; Zhu Y J Chromatogr A; 2012 Mar; 1229():288-92. PubMed ID: 22305361 [TBL] [Abstract][Full Text] [Related]
12. Coupling of ionic liquid-based headspace single-drop microextraction with GC for sensitive detection of phenols. Zhao FQ; Li J; Zeng BZ J Sep Sci; 2008 Sep; 31(16-17):3045-9. PubMed ID: 18704999 [TBL] [Abstract][Full Text] [Related]
13. Determination of brominated phenols in water samples by on-line coupled isotachophoresis with capillary zone electrophoresis. Knob R; Marák J; Stanová A; Maier V; Kaniansky D; Sevcík J J Chromatogr A; 2010 May; 1217(20):3446-51. PubMed ID: 20378119 [TBL] [Abstract][Full Text] [Related]
14. Amino modified multi-walled carbon nanotubes/polydimethylsiloxane coated stir bar sorptive extraction coupled to high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental samples. Hu C; Chen B; He M; Hu B J Chromatogr A; 2013 Jul; 1300():165-72. PubMed ID: 23726076 [TBL] [Abstract][Full Text] [Related]
15. Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples. Zhong C; He M; Liao H; Chen B; Wang C; Hu B J Chromatogr A; 2016 Apr; 1441():8-15. PubMed ID: 26961915 [TBL] [Abstract][Full Text] [Related]
16. Two polydimethylsiloxane rod extraction methods for the sensitive determination of phenolic compounds in water samples. Valls-Cantenys C; Iglesias M; Salvadó V J Sep Sci; 2014 Dec; 37(24):3706-13. PubMed ID: 25298248 [TBL] [Abstract][Full Text] [Related]
17. Analysis of phenols in water by high-performance liquid chromatography using coumarin-6-sulfonyl chloride as a fluorogenic precolumn label. Suliman FE; Al-Kindi SS; Al-Kindy SM; Al-Lawati HA J Chromatogr A; 2006 Jan; 1101(1-2):179-84. PubMed ID: 16266712 [TBL] [Abstract][Full Text] [Related]
18. Molecularly imprinted solid-phase extraction combined with high performance liquid chromatography for analysis of phenolic compounds from environmental water samples. Feng QZ; Zhao LX; Yan W; Lin JM; Zheng ZX J Hazard Mater; 2009 Aug; 167(1-3):282-8. PubMed ID: 19233552 [TBL] [Abstract][Full Text] [Related]
19. Spectrophotometric determination of triclosan based on diazotization reaction: response surface optimization using Box-Behnken design. Kaur I; Gaba S; Kaur S; Kumar R; Chawla J Water Sci Technol; 2018 May; 77(9-10):2204-2212. PubMed ID: 29757172 [TBL] [Abstract][Full Text] [Related]
20. Determination of priority pollutant phenols in water by HPLC. Realini PA J Chromatogr Sci; 1981 Mar; 19(3):124-9. PubMed ID: 7251807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]