These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 17915873)

  • 1. Self-construction of core-shell and hollow zeolite analcime icositetrahedra: a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core.
    Chen X; Qiao M; Xie S; Fan K; Zhou W; He H
    J Am Chem Soc; 2007 Oct; 129(43):13305-12. PubMed ID: 17915873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early stage reversed crystal growth of zeolite A and its phase transformation to sodalite.
    Greer H; Wheatley PS; Ashbrook SE; Morris RE; Zhou W
    J Am Chem Soc; 2009 Dec; 131(49):17986-92. PubMed ID: 19919054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation mechanism of CaTiO3 hollow crystals with different microstructures.
    Yang X; Fu J; Jin C; Chen J; Liang C; Wu M; Zhou W
    J Am Chem Soc; 2010 Oct; 132(40):14279-87. PubMed ID: 20843080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrications of hollow nanocubes of Cu(2)O and Cu via reductive self-assembly of CuO nanocrystals.
    Teo JJ; Chang Y; Zeng HC
    Langmuir; 2006 Aug; 22(17):7369-77. PubMed ID: 16893240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room temperature synthesis of hollow CdMoO(4) microspheres by a surfactant-free aqueous solution route.
    Wang WS; Zhen L; Xu CY; Zhang BY; Shao WZ
    J Phys Chem B; 2006 Nov; 110(46):23154-8. PubMed ID: 17107158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres.
    Chang Y; Teo JJ; Zeng HC
    Langmuir; 2005 Feb; 21(3):1074-9. PubMed ID: 15667192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of zeolite ANA crystal from zeolite Y by in situ solid phase iso-structure transformation.
    Wang Y; Li X; Xue Z; Dai L; Xie S; Li Q
    J Phys Chem B; 2010 May; 114(17):5747-54. PubMed ID: 20387840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous solution synthesis of CaF2 hollow microspheres via the ostwald ripening process at room temperature.
    Wang WS; Zhen L; Xu CY; Chen JZ; Shao WZ
    ACS Appl Mater Interfaces; 2009 Apr; 1(4):780-8. PubMed ID: 20356002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of DL-alanine hollow tubes and core-shell mesostructures.
    Ma Y; Börner HG; Hartmann J; Cölfen H
    Chemistry; 2006 Oct; 12(30):7882-8. PubMed ID: 16871500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rationally fabricating hollow particles of complex oxides by a templateless hydrothermal route: the case of single-crystalline SrHfO3 hollow cuboidal nanoshells.
    Ye T; Dong Z; Zhao Y; Yu J; Wang F; Zhang L; Zou Y
    Dalton Trans; 2011 Mar; 40(11):2601-6. PubMed ID: 21290081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of uniform silica/polypyrrole core/shell microspheres and polypyrrole hollow microspheres by the template of modified silica particles using different modified agents.
    Yang F; Chu Y; Ma S; Zhang Y; Liu J
    J Colloid Interface Sci; 2006 Sep; 301(2):470-8. PubMed ID: 16777128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step preparation of single-crystalline beta-MnO2 nanotubes.
    Zheng D; Sun S; Fan W; Yu H; Fan C; Cao G; Yin Z; Song X
    J Phys Chem B; 2005 Sep; 109(34):16439-43. PubMed ID: 16853090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of bimodal porous silicate with silicalite-1 core/mesoporous shell structures and synthesis of nonspherical carbon and silica nanocases with hollow core/mesoporous shell structures.
    Yu JS; Yoon SB; Lee YJ; Yoon KB
    J Phys Chem B; 2005 Apr; 109(15):7040-5. PubMed ID: 16851800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model for crystal growth by aggregation of precursor metastable nanoparticles.
    Drews TO; Katsoulakis MA; Tsapatsis M
    J Phys Chem B; 2005 Dec; 109(50):23879-87. PubMed ID: 16375373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties.
    Xi G; Ye J
    Inorg Chem; 2010 Mar; 49(5):2302-9. PubMed ID: 20088491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-pot sonochemical fabrication of hierarchical hollow CuO submicrospheres.
    Deng C; Hu H; Ge X; Han C; Zhao D; Shao G
    Ultrason Sonochem; 2011 Sep; 18(5):932-7. PubMed ID: 21315647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal formation and growth during the hydrothermal synthesis of beta-Ni(OH)2 in one-dimensional nano space.
    Orikasa H; Karoji J; Matsui K; Kyotani T
    Dalton Trans; 2007 Sep; (34):3757-62. PubMed ID: 17712441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hollowing Sn-doped TiO2 nanospheres via ostwald ripening.
    Li J; Zeng HC
    J Am Chem Soc; 2007 Dec; 129(51):15839-47. PubMed ID: 18047331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of direct crystal growth and presence of hollow microspheres in magnetite particles prepared by oxidation of Fe(OH)2.
    Vereda F; Rodríguez-González B; de Vicente J; Hidalgo-Alvarez R
    J Colloid Interface Sci; 2008 Feb; 318(2):520-4. PubMed ID: 18061607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties.
    Wu XF; Song HY; Yoon JM; Yu YT; Chen YF
    Langmuir; 2009 Jun; 25(11):6438-47. PubMed ID: 19341284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.