These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 17915945)
1. The N-terminal (1-44) and C-terminal (198-243) peptides of apolipoprotein A-I behave differently at the triolein/water interface. Wang L; Hua N; Atkinson D; Small DM Biochemistry; 2007 Oct; 46(43):12140-51. PubMed ID: 17915945 [TBL] [Abstract][Full Text] [Related]
2. The interfacial properties of ApoA-I and an amphipathic alpha-helix consensus peptide of exchangeable apolipoproteins at the triolein/water interface. Wang L; Atkinson D; Small DM J Biol Chem; 2005 Feb; 280(6):4154-65. PubMed ID: 15695525 [TBL] [Abstract][Full Text] [Related]
3. Surface behavior of apolipoprotein A-I and its deletion mutants at model lipoprotein interfaces. Wang L; Mei X; Atkinson D; Small DM J Lipid Res; 2014 Mar; 55(3):478-92. PubMed ID: 24308948 [TBL] [Abstract][Full Text] [Related]
4. Apolipoprotein B is conformationally flexible but anchored at a triolein/water interface: a possible model for lipoprotein surfaces. Wang L; Walsh MT; Small DM Proc Natl Acad Sci U S A; 2006 May; 103(18):6871-6. PubMed ID: 16636271 [TBL] [Abstract][Full Text] [Related]
5. Conformation and lipid binding of the N-terminal (1-44) domain of human apolipoprotein A-I. Zhu HL; Atkinson D Biochemistry; 2004 Oct; 43(41):13156-64. PubMed ID: 15476409 [TBL] [Abstract][Full Text] [Related]
6. Apolipoprotein C-I binds more strongly to phospholipid/triolein/water than triolein/water interfaces: a possible model for inhibiting cholesterol ester transfer protein activity and triacylglycerol-rich lipoprotein uptake. Meyers NL; Wang L; Small DM Biochemistry; 2012 Feb; 51(6):1238-48. PubMed ID: 22264166 [TBL] [Abstract][Full Text] [Related]
7. C-terminus of apolipoprotein A-I removes phospholipids from a triolein/phospholipids/water interface, but the N-terminus does not: a possible mechanism for nascent HDL assembly. Mitsche MA; Small DM Biophys J; 2011 Jul; 101(2):353-61. PubMed ID: 21767487 [TBL] [Abstract][Full Text] [Related]
8. Influence of tertiary structure domain properties on the functionality of apolipoprotein A-I. Tanaka M; Koyama M; Dhanasekaran P; Nguyen D; Nickel M; Lund-Katz S; Saito H; Phillips MC Biochemistry; 2008 Feb; 47(7):2172-80. PubMed ID: 18205410 [TBL] [Abstract][Full Text] [Related]
9. Effects of the core lipid on the energetics of binding of ApoA-I to model lipoprotein particles of different sizes. Tanaka M; Saito H; Dhanasekaran P; Wehrli S; Handa T; Lund-Katz S; Phillips MC Biochemistry; 2005 Aug; 44(31):10689-95. PubMed ID: 16060677 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of competitive adsorption of alphas-casein and beta-casein at planar triolein-water interface: evidence for incompatibility of mixing in the interfacial film. Damodaran S; Sengupta T J Agric Food Chem; 2003 Mar; 51(6):1658-65. PubMed ID: 12617601 [TBL] [Abstract][Full Text] [Related]
11. Lateral interactions of pig apolipoprotein A-1 with egg yolk phosphatidylcholine and with cholesterol in mixed monolayers at the triolein-saline interface. Handa T; Saito H; Tanaka I; Kakee A; Tanaka K; Miyajima K Biochemistry; 1992 Feb; 31(5):1415-20. PubMed ID: 1736998 [TBL] [Abstract][Full Text] [Related]
12. Surface study of apoB1694-1880, a sequence that can anchor apoB to lipoproteins and make it nonexchangeable. Wang L; Martin DD; Genter E; Wang J; McLeod RS; Small DM J Lipid Res; 2009 Jul; 50(7):1340-52. PubMed ID: 19251580 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of lipid-binding properties of the N-terminal helical segments in human apolipoprotein A-I using fragment peptides. Tanaka M; Tanaka T; Ohta S; Kawakami T; Konno H; Akaji K; Aimoto S; Saito H J Pept Sci; 2009 Jan; 15(1):36-42. PubMed ID: 19048603 [TBL] [Abstract][Full Text] [Related]
14. Interfacial properties of amphipathic beta strand consensus peptides of apolipoprotein B at oil/water interfaces. Wang L; Small DM J Lipid Res; 2004 Sep; 45(9):1704-15. PubMed ID: 15231853 [TBL] [Abstract][Full Text] [Related]
16. Analysis of apolipoprotein A-I as a substrate for matrix metalloproteinase-14. Park JH; Park SM; Park KH; Cho KH; Lee ST Biochem Biophys Res Commun; 2011 May; 409(1):58-63. PubMed ID: 21549099 [TBL] [Abstract][Full Text] [Related]
17. Binding steps of apolipoprotein A-I with phospholipid monolayers: adsorption and penetration. Lecompte MF; Bras AC; Dousset N; Portas I; Salvayre R; Ayrault-Jarrier M Biochemistry; 1998 Nov; 37(46):16165-71. PubMed ID: 9819208 [TBL] [Abstract][Full Text] [Related]
18. Interfacial properties of a complex multi-domain 490 amino acid peptide derived from apolipoprotein B (residues 292-782). Mitsche MA; Wang L; Jiang ZG; McKnight CJ; Small DM Langmuir; 2009 Feb; 25(4):2322-30. PubMed ID: 19146422 [TBL] [Abstract][Full Text] [Related]
19. Interfacial properties of apolipoprotein B292-593 (B6.4-13) and B611-782 (B13-17). Insights into the structure of the lipovitellin homology region in apolipoprotein B. Wang L; Jiang ZG; McKnight CJ; Small DM Biochemistry; 2010 May; 49(18):3898-907. PubMed ID: 20353182 [TBL] [Abstract][Full Text] [Related]
20. Effects of surface pressure on the structure of the monolayer formed at the air/water interface by a non-ionic surfactant. Ma G; Barlow DJ; Hollinshead CM; Harvey RD; Webster JR; Lawrence MJ J Colloid Interface Sci; 2008 Jan; 317(1):314-25. PubMed ID: 17931647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]