These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
551 related articles for article (PubMed ID: 17916113)
1. Potassium transport systems in the moss Physcomitrella patens: pphak1 plants reveal the complexity of potassium uptake. Garciadeblas B; Barrero-Gil J; Benito B; Rodríguez-Navarro A Plant J; 2007 Dec; 52(6):1080-93. PubMed ID: 17916113 [TBL] [Abstract][Full Text] [Related]
2. High-affinity sodium uptake in land plants. Haro R; Bañuelos MA; Rodríguez-Navarro A Plant Cell Physiol; 2010 Jan; 51(1):68-79. PubMed ID: 19939835 [TBL] [Abstract][Full Text] [Related]
3. Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. Horie T; Sugawara M; Okada T; Taira K; Kaothien-Nakayama P; Katsuhara M; Shinmyo A; Nakayama H J Biosci Bioeng; 2011 Mar; 111(3):346-56. PubMed ID: 21084222 [TBL] [Abstract][Full Text] [Related]
4. Knockouts of Physcomitrella patens CHX1 and CHX2 transporters reveal high complexity of potassium homeostasis. Mottaleb SA; Rodríguez-Navarro A; Haro R Plant Cell Physiol; 2013 Sep; 54(9):1455-68. PubMed ID: 23825218 [TBL] [Abstract][Full Text] [Related]
5. HAK transporters from Physcomitrella patens and Yarrowia lipolytica mediate sodium uptake. Benito B; Garciadeblas B; Rodriguez-Navarro A Plant Cell Physiol; 2012 Jun; 53(6):1117-23. PubMed ID: 22514087 [TBL] [Abstract][Full Text] [Related]
6. Comparative analysis of the SBP-box gene families in P. patens and seed plants. Riese M; Höhmann S; Saedler H; Münster T; Huijser P Gene; 2007 Oct; 401(1-2):28-37. PubMed ID: 17689888 [TBL] [Abstract][Full Text] [Related]
7. The potassium transporters HAK2 and HAK3 localize to endomembranes in Physcomitrella patens. HAK2 is required in some stress conditions. Haro R; Fraile-Escanciano A; González-Melendi P; Rodríguez-Navarro A Plant Cell Physiol; 2013 Sep; 54(9):1441-54. PubMed ID: 23825217 [TBL] [Abstract][Full Text] [Related]
8. The family of CONSTANS-like genes in Physcomitrella patens. Zobell O; Coupland G; Reiss B Plant Biol (Stuttg); 2005 May; 7(3):266-75. PubMed ID: 15912446 [TBL] [Abstract][Full Text] [Related]
9. High-affinity potassium and sodium transport systems in plants. Rodríguez-Navarro A; Rubio F J Exp Bot; 2006; 57(5):1149-60. PubMed ID: 16449373 [TBL] [Abstract][Full Text] [Related]
10. Cloning of the PpNHAD1 transporter of Physcomitrella patens, a chloroplast transporter highly conserved in photosynthetic eukaryotic organisms. Barrero-Gil J; Rodríguez-Navarro A; Benito B J Exp Bot; 2007; 58(11):2839-49. PubMed ID: 17617660 [TBL] [Abstract][Full Text] [Related]
11. Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens. Rensing SA; Fritzowsky D; Lang D; Reski R BMC Genomics; 2005 Mar; 6():43. PubMed ID: 15784153 [TBL] [Abstract][Full Text] [Related]
12. Distinct roles of nitrate and nitrite in regulation of expression of the nitrate transport genes in the moss Physcomitrella patens. Tsujimoto R; Yamazaki H; Maeda S; Omata T Plant Cell Physiol; 2007 Mar; 48(3):484-97. PubMed ID: 17289796 [TBL] [Abstract][Full Text] [Related]
13. Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.). Yang Z; Gao Q; Sun C; Li W; Gu S; Xu C J Genet Genomics; 2009 Mar; 36(3):161-72. PubMed ID: 19302972 [TBL] [Abstract][Full Text] [Related]
14. On the expansion of the pentatricopeptide repeat gene family in plants. O'Toole N; Hattori M; Andres C; Iida K; Lurin C; Schmitz-Linneweber C; Sugita M; Small I Mol Biol Evol; 2008 Jun; 25(6):1120-8. PubMed ID: 18343892 [TBL] [Abstract][Full Text] [Related]
15. Identification and characterization of cDNAs encoding pentatricopeptide repeat proteins in the basal land plant, the moss Physcomitrella patens. Hattori M; Hasebe M; Sugita M Gene; 2004 Dec; 343(2):305-11. PubMed ID: 15588585 [TBL] [Abstract][Full Text] [Related]
16. Toc64 is not required for import of proteins into chloroplasts in the moss Physcomitrella patens. Rosenbaum Hofmann N; Theg SM Plant J; 2005 Sep; 43(5):675-87. PubMed ID: 16115065 [TBL] [Abstract][Full Text] [Related]
17. Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. Rubio F; Nieves-Cordones M; Alemán F; Martínez V Physiol Plant; 2008 Dec; 134(4):598-608. PubMed ID: 19000196 [TBL] [Abstract][Full Text] [Related]
18. Physcomitrella patens: a model to investigate the role of RAC/ROP GTPase signalling in tip growth. Eklund DM; Svensson EM; Kost B J Exp Bot; 2010 Apr; 61(7):1917-37. PubMed ID: 20368308 [TBL] [Abstract][Full Text] [Related]
19. Potassium and sodium uptake systems in fungi. The transporter diversity of Magnaporthe oryzae. Benito B; Garciadeblás B; Fraile-Escanciano A; Rodríguez-Navarro A Fungal Genet Biol; 2011 Aug; 48(8):812-22. PubMed ID: 21406243 [TBL] [Abstract][Full Text] [Related]
20. Isolation and characterization of new MIKC*-Type MADS-box genes from the moss Physcomitrella patens. Riese M; Faigl W; Quodt V; Verelst W; Matthes A; Saedler H; Münster T Plant Biol (Stuttg); 2005 May; 7(3):307-14. PubMed ID: 15912451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]