These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Strategies to enhance the therapeutic activity of cancer vaccines: using melanoma as a model. Berinstein NL Ann N Y Acad Sci; 2009 Sep; 1174():107-17. PubMed ID: 19769743 [TBL] [Abstract][Full Text] [Related]
3. Ampligen: a potential toll-like 3 receptor adjuvant for immunotherapy of cancer. Jasani B; Navabi H; Adams M Vaccine; 2009 May; 27(25-26):3401-4. PubMed ID: 19200817 [TBL] [Abstract][Full Text] [Related]
4. How immunotherapy can enhance the response to other modalities and improve outcome and quality of life. Liu WM; Meyer B; Dalgleish AG J BUON; 2009 Sep; 14 Suppl 1():S103-9. PubMed ID: 19785052 [TBL] [Abstract][Full Text] [Related]
5. Dendritic cell vaccines in melanoma: from promise to proof? Lesterhuis WJ; Aarntzen EH; De Vries IJ; Schuurhuis DH; Figdor CG; Adema GJ; Punt CJ Crit Rev Oncol Hematol; 2008 May; 66(2):118-34. PubMed ID: 18262431 [TBL] [Abstract][Full Text] [Related]
6. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Peggs KS; Quezada SA; Allison JP Immunol Rev; 2008 Aug; 224():141-65. PubMed ID: 18759925 [TBL] [Abstract][Full Text] [Related]
7. Allogeneic GM-CSF-secreting tumor cell immunotherapies generate potent anti-tumor responses comparable to autologous tumor cell immunotherapies. Li B; Simmons A; Du T; Lin C; Moskalenko M; Gonzalez-Edick M; VanRoey M; Jooss K Clin Immunol; 2009 Nov; 133(2):184-97. PubMed ID: 19664962 [TBL] [Abstract][Full Text] [Related]
8. Does our current understanding of immune tolerance, autoimmunity, and immunosuppressive mechanisms facilitate the design of efficient cancer vaccines? Sioud M Scand J Immunol; 2009 Dec; 70(6):516-25. PubMed ID: 19906192 [TBL] [Abstract][Full Text] [Related]
9. TLR ligand suppression or enhancement of Treg cells? A double-edged sword in immunity to tumours. Conroy H; Marshall NA; Mills KH Oncogene; 2008 Jan; 27(2):168-80. PubMed ID: 18176598 [TBL] [Abstract][Full Text] [Related]
10. Cell fusion: from hybridoma to dendritic cell-based vaccine. Gong J; Koido S; Calderwood SK Expert Rev Vaccines; 2008 Sep; 7(7):1055-68. PubMed ID: 18767954 [TBL] [Abstract][Full Text] [Related]
11. Immunotherapy for malignant melanoma--tracing Ariadne's thread through the labyrinth. Grange JM; Krone B; Stanford JL Eur J Cancer; 2009 Sep; 45(13):2266-73. PubMed ID: 19497734 [TBL] [Abstract][Full Text] [Related]
12. Prospects for vaccine therapy for pancreatic cancer. Gaudernack G Best Pract Res Clin Gastroenterol; 2006 Apr; 20(2):299-314. PubMed ID: 16549329 [TBL] [Abstract][Full Text] [Related]
13. Therapeutic cancer vaccines. Morris LF; Ribas A Surg Oncol Clin N Am; 2007 Oct; 16(4):819-31, ix. PubMed ID: 18022546 [TBL] [Abstract][Full Text] [Related]
14. Clinical phase I intratumoral administration of two recombinant ALVAC canarypox viruses expressing human granulocyte-macrophage colony-stimulating factor or interleukin-2: the transgene determines the composition of the inflammatory infiltrate. Hofbauer GF; Baur T; Bonnet MC; Tartour E; Burg G; Berinstein NL; Dummer R Melanoma Res; 2008 Apr; 18(2):104-11. PubMed ID: 18337646 [TBL] [Abstract][Full Text] [Related]
15. Advances in specific immunotherapy for prostate cancer. Kiessling A; Füssel S; Wehner R; Bachmann M; Wirth MP; Rieber EP; Schmitz M Eur Urol; 2008 Apr; 53(4):694-708. PubMed ID: 18061335 [TBL] [Abstract][Full Text] [Related]