These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 17916497)

  • 21. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis.
    Park Y; González-Martínez RM; Navarro-Cerrillo G; Chakroun M; Kim Y; Ziarsolo P; Blanca J; Cañizares J; Ferré J; Herrero S
    BMC Biol; 2014 Jun; 12():46. PubMed ID: 24912445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of baculovirus insecticides expressing tailored Bacillus thuringiensis CryIA(b) crystal proteins.
    Martens JW; Knoester M; Weijts F; Groffen SJ; Hu Z; Bosch D; Vlak JM
    J Invertebr Pathol; 1995 Nov; 66(3):249-57. PubMed ID: 8568280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New insights on the role of alkaline phosphatase 2 from Spodoptera exigua (Hübner) in the action mechanism of Bt toxin Cry2Aa.
    Yuan X; Zhao M; Wei J; Zhang W; Wang B; Myint Khaing M; Liang G
    J Insect Physiol; 2017 Apr; 98():101-107. PubMed ID: 28034678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insecticidal crystal proteins from native Bacillus thuringiensis: numerical analysis and biological activity against Spodoptera frugiperda.
    Alvarez A; Pera LM; Loto F; Virla EG; Baigori MD
    Biotechnol Lett; 2009 Jan; 31(1):77-82. PubMed ID: 18800190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and characterization of strain of Bacillus thuringiensis subsp. kenyae containing two novel cry1-type toxin genes.
    Choi JY; Li MS; Shim HJ; Roh JY; Woo SD; Jin BR; Boo KS; Je YH
    J Microbiol Biotechnol; 2007 Sep; 17(9):1498-503. PubMed ID: 18062228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Possible Insecticidal Mechanisms Mediated by Immune-Response-Related Cry-Binding Proteins in the Midgut Juice of Plutella xylostella and Spodoptera exigua.
    Lu K; Gu Y; Liu X; Lin Y; Yu XQ
    J Agric Food Chem; 2017 Mar; 65(10):2048-2055. PubMed ID: 28231709
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cloning and characterization of the Cry1Ac-binding alkaline phosphatase (HvALP) from Heliothis virescens.
    Perera OP; Willis JD; Adang MJ; Jurat-Fuentes JL
    Insect Biochem Mol Biol; 2009 Apr; 39(4):294-302. PubMed ID: 19552892
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The enhancin-like metalloprotease from the Bacillus cereus group is regulated by the pleiotropic transcriptional activator PlcR but is not essential for larvicidal activity.
    Hajaij-Ellouze M; Fedhila S; Lereclus D; Nielsen-LeRoux C
    FEMS Microbiol Lett; 2006 Jul; 260(1):9-16. PubMed ID: 16790012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MOLECULAR CHARACTERIZATION OF AUTOPHAGY-RELATED GENE 5 FROM Spodoptera exigua AND EXPRESSION ANALYSIS UNDER VARIOUS STRESS CONDITIONS.
    Liu KY; Xia YQ; Zhou J; Chen ZW; Lu D; Zhang NZ; Liu XS; Ai H; Zhou LL
    Arch Insect Biochem Physiol; 2016 Aug; 92(4):225-41. PubMed ID: 27226059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three heat shock proteins from Spodoptera exigua: Gene cloning, characterization and comparative stress response during heat and cold shocks.
    Xu Q; Zou Q; Zheng H; Zhang F; Tang B; Wang S
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Jun; 159(2):92-102. PubMed ID: 21362495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Expression of the artificial cecropin CMIV-like gene of Chinese silkworm Bombyx mori in Laphygma exigua larvae].
    Zhao D; Dai Z; Zhou K; Zhang L
    Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):680-5. PubMed ID: 12552823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An immunological role of a PKC alpha binding protein (PICK1) expressed in the hemocytes of the beet armyworm, Spodoptera exigua.
    Shrestha S; Prasad SV; Kim Y
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Mar; 158(3):216-22. PubMed ID: 21122821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A chymotrypsin-like serine protease cDNA involved in food protein digestion in the common cutworm, Spodoptera litura: Cloning, characterization, developmental and induced expression patterns, and localization.
    Zhang C; Zhou D; Zheng S; Liu L; Tao S; Yang L; Hu S; Feng Q
    J Insect Physiol; 2010 Jul; 56(7):788-99. PubMed ID: 20149796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and expression of glutathione S-transferase genes from the midgut of the Common cutworm, Spodoptera litura (Noctuidae) and their response to xenobiotic compounds and bacteria.
    Huang Y; Xu Z; Lin X; Feng Q; Zheng S
    J Insect Physiol; 2011 Jul; 57(7):1033-44. PubMed ID: 21605564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cadherin gene expression and effects of Bt resistance on sperm transfer in pink bollworm.
    Carrière Y; Showalter AM; Fabrick JA; Sollome J; Ellers-Kirk C; Tabashnik BE
    J Insect Physiol; 2009 Nov; 55(11):1058-64. PubMed ID: 19666026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunological characterization of the VSV nucleocapsid (N) protein expressed by recombinant baculovirus in Spodoptera exigua larva: use in differential diagnosis between vaccinated and infected animals.
    Ahmad S; Bassiri M; Banerjee AK; Yilma T
    Virology; 1993 Jan; 192(1):207-16. PubMed ID: 8390753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lysozymes and lysozyme-like proteins from the fall armyworm, Spodoptera frugiperda.
    Chapelle M; Girard PA; Cousserans F; Volkoff NA; Duvic B
    Mol Immunol; 2009 Dec; 47(2-3):261-9. PubMed ID: 19828200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin.
    Rajagopal R; Arora N; Sivakumar S; Rao NG; Nimbalkar SA; Bhatnagar RK
    Biochem J; 2009 Apr; 419(2):309-16. PubMed ID: 19146482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The transcriptome of Spodoptera exigua larvae exposed to different types of microbes.
    Pascual L; Jakubowska AK; Blanca JM; Cañizares J; Ferré J; Gloeckner G; Vogel H; Herrero S
    Insect Biochem Mol Biol; 2012 Aug; 42(8):557-70. PubMed ID: 22564783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut.
    de Barros Moreira Beltrão H; Silva-Filha MH
    FEMS Microbiol Lett; 2007 Jan; 266(2):163-9. PubMed ID: 17132151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.