These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. Burow M; Markert J; Gershenzon J; Wittstock U FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417 [TBL] [Abstract][Full Text] [Related]
5. Uptake and turn-over of glucosinolates sequestered in the sawfly Athalia rosae. Müller C; Wittstock U Insect Biochem Mol Biol; 2005 Oct; 35(10):1189-98. PubMed ID: 16102424 [TBL] [Abstract][Full Text] [Related]
6. Metabolite profiling of Arabidopsis seedlings in response to exogenous sinalbin and sulfur deficiency. Zhang J; Sun X; Zhang Z; Ni Y; Zhang Q; Liang X; Xiao H; Chen J; Tokuhisa JG Phytochemistry; 2011 Oct; 72(14-15):1767-78. PubMed ID: 21726880 [TBL] [Abstract][Full Text] [Related]
7. Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate. Petersen BL; Andréasson E; Bak S; Agerbirk N; Halkier BA Planta; 2001 Mar; 212(4):612-8. PubMed ID: 11525519 [TBL] [Abstract][Full Text] [Related]
8. Evolution of nitrilases in glucosinolate-containing plants. Janowitz T; Trompetter I; Piotrowski M Phytochemistry; 2009; 70(15-16):1680-6. PubMed ID: 19698961 [TBL] [Abstract][Full Text] [Related]
9. Characterization of recombinant nitrile-specifier proteins (NSPs) of Arabidopsis thaliana: dependency on Fe(II) ions and the effect of glucosinolate substrate and reaction conditions. Kong XY; Kissen R; Bones AM Phytochemistry; 2012 Dec; 84():7-17. PubMed ID: 22954730 [TBL] [Abstract][Full Text] [Related]
10. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Wittstock U; Agerbirk N; Stauber EJ; Olsen CE; Hippler M; Mitchell-Olds T; Gershenzon J; Vogel H Proc Natl Acad Sci U S A; 2004 Apr; 101(14):4859-64. PubMed ID: 15051878 [TBL] [Abstract][Full Text] [Related]
11. Geographic and evolutionary diversification of glucosinolates among near relatives of Arabidopsis thaliana (Brassicaceae). Windsor AJ; Reichelt M; Figuth A; Svatos A; Kroymann J; Kliebenstein DJ; Gershenzon J; Mitchell-Olds T Phytochemistry; 2005 Jun; 66(11):1321-33. PubMed ID: 15913672 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor. Bak S; Olsen CE; Petersen BL; Møller BL; Halkier BA Plant J; 1999 Dec; 20(6):663-71. PubMed ID: 10652138 [TBL] [Abstract][Full Text] [Related]
13. Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis. Bak S; Olsen CE; Halkier BA; Møller BL Plant Physiol; 2000 Aug; 123(4):1437-48. PubMed ID: 10938360 [TBL] [Abstract][Full Text] [Related]
14. Variability of aliphatic glucosinolates in Arabidopsis and their influence on insect resistance. Rohr F; Ulrichs C; Mucha-Pelzer T; Mewis I Commun Agric Appl Biol Sci; 2006; 71(2 Pt B):507-15. PubMed ID: 17385519 [TBL] [Abstract][Full Text] [Related]
15. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis. Burow M; Losansky A; Müller R; Plock A; Kliebenstein DJ; Wittstock U Plant Physiol; 2009 Jan; 149(1):561-74. PubMed ID: 18987211 [TBL] [Abstract][Full Text] [Related]
16. Characterisation of recombinant epithiospecifier protein and its over-expression in Arabidopsis thaliana. Zabala Mde T; Grant M; Bones AM; Bennett R; Lim YS; Kissen R; Rossiter JT Phytochemistry; 2005 Apr; 66(8):859-67. PubMed ID: 15845404 [TBL] [Abstract][Full Text] [Related]
17. Turning the 'mustard oil bomb' into a 'cyanide bomb': aromatic glucosinolate metabolism in a specialist insect herbivore. Stauber EJ; Kuczka P; van Ohlen M; Vogt B; Janowitz T; Piotrowski M; Beuerle T; Wittstock U PLoS One; 2012; 7(4):e35545. PubMed ID: 22536404 [TBL] [Abstract][Full Text] [Related]
18. Tipping the scales--specifier proteins in glucosinolate hydrolysis. Wittstock U; Burow M IUBMB Life; 2007 Dec; 59(12):744-51. PubMed ID: 18085474 [TBL] [Abstract][Full Text] [Related]
19. Supercritical fluid chromatography as a method of analysis for the determination of 4-hydroxybenzylglucosinolate degradation products. Buskov S; Hasselstrøm J; Olsen CE; Sørensen H; Sørensen JC; Sørensen S J Biochem Biophys Methods; 2000 Jul; 43(1-3):157-74. PubMed ID: 10869674 [TBL] [Abstract][Full Text] [Related]
20. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ Phytochemistry; 2009; 70(11-12):1401-9. PubMed ID: 19747700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]