BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17916945)

  • 1. Factors in fish modifying methylmercury toxicity and metabolism.
    Ganther HE; Sunde ML
    Biol Trace Elem Res; 2007 Dec; 119(3):221-33. PubMed ID: 17916945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dietary and tissue selenium in relation to methylmercury toxicity.
    Ralston NV; Ralston CR; Blackwell JL; Raymond LJ
    Neurotoxicology; 2008 Sep; 29(5):802-11. PubMed ID: 18761370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of molar ratios in selenium-dependent protection against methylmercury toxicity.
    Ralston NV; Blackwell JL; Raymond LJ
    Biol Trace Elem Res; 2007 Dec; 119(3):255-68. PubMed ID: 17916948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of dietary methylmercury and seleno-methionine on Sacramento splittail larvae.
    Deng DF; Teh FC; Teh SJ
    Sci Total Environ; 2008 Dec; 407(1):197-203. PubMed ID: 18817945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury-selenium species ratio in representative fish samples and their bioaccessibility by an in vitro digestion method.
    Cabañero AI; Madrid Y; Cámara C
    Biol Trace Elem Res; 2007 Dec; 119(3):195-211. PubMed ID: 17916943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury and selenium interaction in vivo: effects on thioredoxin reductase and glutathione peroxidase.
    Branco V; Canário J; Lu J; Holmgren A; Carvalho C
    Free Radic Biol Med; 2012 Feb; 52(4):781-93. PubMed ID: 22198265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating effects of dietary fats on methylmercury toxicity and distribution in rats.
    Jin X; Lok E; Bondy G; Caldwell D; Mueller R; Kapal K; Armstrong C; Taylor M; Kubow S; Mehta R; Chan HM
    Toxicology; 2007 Jan; 230(1):22-44. PubMed ID: 17184894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nail as a noninvasive indicator of methylmercury exposures and mercury/selenium molar ratios in brain, kidney, and livers of Long-Evans rats.
    Brockman JD; Raymond LJ; Ralston CR; Robertson JD; Bodkin N; Sharp N; Ralston NV
    Biol Trace Elem Res; 2011 Dec; 144(1-3):812-20. PubMed ID: 21476009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maintaining tissue selenium species distribution as a potential defense mechanism against methylmercury toxicity in juvenile white sturgeon (Acipenser transmontanus).
    Huang SS; Hung SS; Chan HM
    Aquat Toxicol; 2014 Nov; 156():88-95. PubMed ID: 25170596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary selenium's protective effects against methylmercury toxicity.
    Ralston NV; Raymond LJ
    Toxicology; 2010 Nov; 278(1):112-23. PubMed ID: 20561558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-consumption of selenium and vitamin E altered the reproductive and developmental toxicity of methylmercury in rats.
    Beyrouty P; Chan HM
    Neurotoxicol Teratol; 2006; 28(1):49-58. PubMed ID: 16427250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse relationships between selenium and mercury in tissues of young walleye (Stizosedion vitreum) from Canadian boreal lakes.
    Yang DY; Ye X; Chen YW; Belzile N
    Sci Total Environ; 2010 Mar; 408(7):1676-83. PubMed ID: 20006995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain and blood mercury and selenium after chronic and developmental exposure to methylmercury.
    Newland MC; Reed MN; LeBlanc A; Donlin WD
    Neurotoxicology; 2006 Sep; 27(5):710-20. PubMed ID: 16824603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interactive effects of selenomethionine and methylmercury on their absorption, disposition, and elimination in juvenile white sturgeon.
    Huang SS; Strathe AB; Fadel JG; Johnson ML; Lin P; Liu TY; Hung SS
    Aquat Toxicol; 2013 Jan; 126():274-82. PubMed ID: 23089250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low levels of methylmercury induce DNA damage in rats: protective effects of selenium.
    Grotto D; Barcelos GR; Valentini J; Antunes LM; Angeli JP; Garcia SC; Barbosa F
    Arch Toxicol; 2009 Mar; 83(3):249-54. PubMed ID: 18754101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioavailability of selenium in the defatted dark muscle of tuna.
    Yoshida M; Abe M; Fukunaga K; Kikuchi K
    Food Addit Contam; 2002 Oct; 19(10):990-5. PubMed ID: 12443562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary selenomethionine influences the accumulation and depuration of dietary methylmercury in zebrafish (Danio rerio).
    Amlund H; Lundebye AK; Boyle D; Ellingsen S
    Aquat Toxicol; 2015 Jan; 158():211-7. PubMed ID: 25481787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice.
    de Freitas AS; Funck VR; Rotta Mdos S; Bohrer D; Mörschbächer V; Puntel RL; Nogueira CW; Farina M; Aschner M; Rocha JB
    Brain Res Bull; 2009 Apr; 79(1):77-84. PubMed ID: 19047014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue distribution as a factor in species susceptibility to toxicity and hazard assessment. Example: methylmercury.
    Willes RF
    J Environ Pathol Toxicol; 1977; 1(2):135-46. PubMed ID: 553127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships among mercury, selenium, and neurochemical parameters in common loons (Gavia immer) and bald eagles (Haliaeetus leucocephalus).
    Scheuhammer AM; Basu N; Burgess NM; Elliott JE; Campbell GD; Wayland M; Champoux L; Rodrigue J
    Ecotoxicology; 2008 Feb; 17(2):93-101. PubMed ID: 17899374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.