BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17917298)

  • 1. A facile synthesis of p- and m-(amidinomethyl)phenyl esters derived from amino acid and tryptic hydrolysis of these synthetic inverse substrates.
    Sekizaki H; Itoh K; Shibuya A; Toyota E; Tanizawa K
    Chem Pharm Bull (Tokyo); 2007 Oct; 55(10):1514-7. PubMed ID: 17917298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and tryptic hydrolysis of p-guanidinophenyl esters derived from amino acids and peptides.
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    Chem Pharm Bull (Tokyo); 1996 Aug; 44(8):1577-9. PubMed ID: 8795276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trypsin-catalyzed peptide synthesis with m-guanidinophenyl and m-(guanidinomethyl)phenyl esters as acyl donor component.
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    Amino Acids; 1999; 17(3):285-91. PubMed ID: 10582127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fairly marked enantioselectivity for the hydrolysis of amino acid esters by chemically modified enzymes.
    Yano Y; Shimada K; Okai J; Goto K; Matsumoto Y; Ueoka R
    J Org Chem; 2003 Feb; 68(4):1314-8. PubMed ID: 12585870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trypsin-catalyzed synthesis of dipeptide containing alpha-aminoisobutyric acid using p- and m-(amidinomethyl)phenyl esters as acyl donor.
    Sekizaki H; Itoh K; Shibuya A; Toyota E; Kojoma M; Tanizawa K
    Chem Pharm Bull (Tokyo); 2008 May; 56(5):688-91. PubMed ID: 18451559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantiomeric specificity at the deacylation process of tryptic catalysis.
    Tanizawa K; Yamada H; Kanaoka Y
    Biochim Biophys Acta; 1987 Nov; 916(2):205-12. PubMed ID: 3676332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse substrates: novel synthetic substrates for trypsin and related enzymes.
    Tanizawa K; Nakayama H; Fujioka T; Nozawa M; Nakaona M; Kanaoka Y
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1982; 109(1):61-6. PubMed ID: 6177609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen and sulfur esters of "inverse substrates": different responses of amidinophenol and amidinothiophenol in the activation of the rate of tryptic hydrolysis of the inverse esters.
    Tanizawa K; Kanaoka Y
    J Biochem; 1985 Jan; 97(1):275-80. PubMed ID: 3997793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New approaches to peptide synthesis with the help of trypsin.
    Mitin YuV ; Zapevalova NP; Gorbunova EYu
    Biomed Biochim Acta; 1991; 50(10-11):S74-9. PubMed ID: 1820064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of latent properties of trypsin. Acyl trypsins derived from enantiomeric pairs of "inverse substrates".
    Fujioka T; Tanizawa K; Kanaoka Y
    J Biochem; 1981 Feb; 89(2):637-43. PubMed ID: 7240132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential roles of alkylammonium and alkylguanidinium ions in trypsin-catalyzed hydrolysis of acetylglycine esters: enhancement of catalytic efficiency analyzed by the use of "inverse substrates".
    Tanizawa K; Nakano M; Lawson WB; Kanaoka Y
    J Biochem; 1982 Sep; 92(3):945-51. PubMed ID: 7142128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavior of trypsin and related enzymes toward amidinophenyl esters.
    Nozawa M; Tanizawa K; Kanaoka Y; Moriya H
    J Pharmacobiodyn; 1981 Aug; 4(8):559-64. PubMed ID: 6457906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple preparation of pacific cod trypsin for enzymatic Peptide synthesis.
    Fuchise T; Sekizaki H; Kishimura H; Klomklao S; Nalinanon S; Benjakul S; Chun BS
    J Amino Acids; 2011; 2011():912382. PubMed ID: 22312475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of the hydrolysis of synthetic substrates by horse urinary kallikrein and trypsin.
    Sampaio MU; Galembeck F; Paiva AC; Prado ES
    Gen Pharmacol; 1976 Aug; 7(2-3):167-71. PubMed ID: 987954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Inverse substrates" for trypsin. Efficient enzymatic hydrolysis of certain esters with a cationic center in the leaving group1.
    Tanizawa K; Kasaba Y; Kanaoka Y
    J Am Chem Soc; 1977 Jun; 99(13):4485-8. PubMed ID: 864123
    [No Abstract]   [Full Text] [Related]  

  • 16. Chum salmon trypsin-catalyzed preferential formation of peptides containing D-amino acid.
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    Amino Acids; 2001; 21(2):175-84. PubMed ID: 11665813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Inverse substrates" for trypsin-like enzymes.
    Nozawa M; Tanizawa K; Kanaoka Y
    J Pharmacobiodyn; 1980 Apr; 3(4):213-9. PubMed ID: 6451682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dithioamino acid in kinetic studies on trypsin catalysis. The tryptic S-alkyl cleavage of ethyl 6-ammoniumdithiohexanoate p-toluene sulfonate.
    Stapf W; Heidberg J; Hartmann H
    Eur J Biochem; 1974 Feb; 42(1):29-32. PubMed ID: 4830194
    [No Abstract]   [Full Text] [Related]  

  • 19. Synthesis and kinetic characterisation of omega-guanidinocarbonic acid ethyl esters as trypsin substrates.
    Schuster M; Medvedkin VN; Schellenberger V; Mitin YuV ; Jakubke HD
    Biomed Biochim Acta; 1990; 49(6):519-21. PubMed ID: 2275728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative kinetic properties of alpha, beta and psi forms of trypsin.
    Foucault G; Seydoux F; Yon J
    Eur J Biochem; 1974 Sep; 47(2):295-302. PubMed ID: 4472038
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.