These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 17917352)
1. [Evaluation of the accuracy of a compensating filter based on compact NC-Mill for radiation therapy]. Oguchi H; Miyazawa M; Takizawa M Nihon Hoshasen Gijutsu Gakkai Zasshi; 2007 Aug; 63(8):877-87. PubMed ID: 17917352 [TBL] [Abstract][Full Text] [Related]
2. [Evaluation of compensator used in radiation therapy]. Lin FJ; Cheng NT; Chen HH; Chen CS; Hsien WL; Leung WM Changgeng Yi Xue Za Zhi; 1990 Jun; 13(2):104-17. PubMed ID: 2224603 [TBL] [Abstract][Full Text] [Related]
3. Dosimetry considerations for a Lipowitz metal tissue compensator system. Henderson SD; Purdy JA; Gerber RL; Mestman SJ Int J Radiat Oncol Biol Phys; 1987 Jul; 13(7):1107-12. PubMed ID: 3597153 [TBL] [Abstract][Full Text] [Related]
4. Effectiveness of compensating filters in the presence of tissue inhomogeneities. Sethi A; Leybovich L; Dogan N; Glasgow G J Appl Clin Med Phys; 2003; 4(3):209-16. PubMed ID: 12841791 [TBL] [Abstract][Full Text] [Related]
5. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions. Brunner CC; Stern SH; Minniti R; Parry MI; Skopec M; Chakrabarti K Med Phys; 2013 Aug; 40(8):081917. PubMed ID: 23927331 [TBL] [Abstract][Full Text] [Related]
6. Kilovoltage transit and exit dosimetry for a small animal image-guided radiotherapy system using built-in EPID. Anvari A; Poirier Y; Sawant A Med Phys; 2018 Oct; 45(10):4642-4651. PubMed ID: 30118144 [TBL] [Abstract][Full Text] [Related]
7. Procedure for accurate fabrication of tissue compensators with high-density material. Mejaddem Y; Lax I; Shamsuddin Adakkai K Phys Med Biol; 1997 Feb; 42(2):415-21. PubMed ID: 9044423 [TBL] [Abstract][Full Text] [Related]
8. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters. Bache ST; Juang T; Belley MD; Koontz BF; Adamovics J; Yoshizumi TT; Kirsch DG; Oldham M Med Phys; 2015 Feb; 42(2):846-55. PubMed ID: 25652497 [TBL] [Abstract][Full Text] [Related]
9. Mathematical modelling of scanner-specific bowtie filters for Monte Carlo CT dosimetry. Kramer R; Cassola VF; Andrade ME; de Araújo MW; Brenner DJ; Khoury HJ Phys Med Biol; 2017 Feb; 62(3):781-809. PubMed ID: 28072578 [TBL] [Abstract][Full Text] [Related]
10. A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms. DeMarco JJ; Cagnon CH; Cody DD; Stevens DM; McCollough CH; O'Daniel J; McNitt-Gray MF Phys Med Biol; 2005 Sep; 50(17):3989-4004. PubMed ID: 16177525 [TBL] [Abstract][Full Text] [Related]
11. Spatial resolution improvement and dose reduction potential for inner ear CT imaging using a z-axis deconvolution technique. McCollough CH; Leng S; Sunnegardh J; Vrieze TJ; Yu L; Lane J; Raupach R; Stierstorfer K; Flohr T Med Phys; 2013 Jun; 40(6):061904. PubMed ID: 23718595 [TBL] [Abstract][Full Text] [Related]
12. A simple model for transit dosimetry based on a water equivalent EPID. Deshpande S; Blake SJ; Xing A; Metcalfe PE; Holloway LC; Vial P Med Phys; 2018 Mar; 45(3):1266-1275. PubMed ID: 29314080 [TBL] [Abstract][Full Text] [Related]
13. Dosimetric impact of image artifact from a wide-bore CT scanner in radiotherapy treatment planning. Wu V; Podgorsak MB; Tran TA; Malhotra HK; Wang IZ Med Phys; 2011 Jul; 38(7):4451-63. PubMed ID: 21859046 [TBL] [Abstract][Full Text] [Related]
14. Design and Fabrication of Kidney Phantoms for Internal Radiation Dosimetry Using 3D Printing Technology. Tran-Gia J; Schlögl S; Lassmann M J Nucl Med; 2016 Dec; 57(12):1998-2005. PubMed ID: 27445291 [TBL] [Abstract][Full Text] [Related]
15. Feasibility study of a dual detector configuration concept for simultaneous megavoltage imaging and dose verification in radiotherapy. Deshpande S; McNamara AL; Holloway L; Metcalfe P; Vial P Med Phys; 2015 Apr; 42(4):1753-64. PubMed ID: 25832065 [TBL] [Abstract][Full Text] [Related]
16. In vivo dosimetry with optically stimulated luminescent dosimeters, OSLDs, compared to diodes; the effects of buildup cap thickness and fabrication material. Jursinic PA; Yahnke CJ Med Phys; 2011 Oct; 38(10):5432-40. PubMed ID: 21992362 [TBL] [Abstract][Full Text] [Related]
17. On the need to revise the arm structure in stylized anthropomorphic phantoms in lateral photon irradiation geometry. Lee C; Lee C; Lee JK Phys Med Biol; 2006 Nov; 51(21):N393-402. PubMed ID: 17047258 [TBL] [Abstract][Full Text] [Related]
18. Phantom validation of coregistration of PET and CT for image-guided radiotherapy. Lavely WC; Scarfone C; Cevikalp H; Li R; Byrne DW; Cmelak AJ; Dawant B; Price RR; Hallahan DE; Fitzpatrick JM Med Phys; 2004 May; 31(5):1083-92. PubMed ID: 15191296 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of superficial dosimetry between treatment planning system and measurement for several breast cancer treatment techniques. Akino Y; Das IJ; Bartlett GK; Zhang H; Thompson E; Zook JE Med Phys; 2013 Jan; 40(1):011714. PubMed ID: 23298084 [TBL] [Abstract][Full Text] [Related]
20. Validation of an in-vivo proton beam range check method in an anthropomorphic pelvic phantom using dose measurements. Bentefour el H; Tang S; Cascio EW; Testa M; Samuel D; Prieels D; Gottschalk B; Lu HM Med Phys; 2015 Apr; 42(4):1936-47. PubMed ID: 25832084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]