BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 17917669)

  • 1. Target deconvolution strategies in drug discovery.
    Terstappen GC; Schlüpen C; Raggiaschi R; Gaviraghi G
    Nat Rev Drug Discov; 2007 Nov; 6(11):891-903. PubMed ID: 17917669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic methods for drug target discovery.
    Sleno L; Emili A
    Curr Opin Chem Biol; 2008 Feb; 12(1):46-54. PubMed ID: 18282485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finding the target after screening the phenotype.
    Hart CP
    Drug Discov Today; 2005 Apr; 10(7):513-9. PubMed ID: 15809197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The target discovery process.
    Egner U; Krätzschmar J; Kreft B; Pohlenz HD; Schneider M
    Chembiochem; 2005 Mar; 6(3):468-79. PubMed ID: 15742383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemistry-based functional proteomics for drug target deconvolution.
    Wang K; Yang T; Wu Q; Zhao X; Nice EC; Huang C
    Expert Rev Proteomics; 2012 Jun; 9(3):293-310. PubMed ID: 22809208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemogenomics: drug discovery's panacea?
    Jacoby E
    Mol Biosyst; 2006 May; 2(5):218-20. PubMed ID: 16880939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seeing small molecules in action with bioorthogonal chemistry.
    Raghavan AS; Hang HC
    Drug Discov Today; 2009 Feb; 14(3-4):178-84. PubMed ID: 18973827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An immuno-chemo-proteomics method for drug target deconvolution.
    Saxena C; Zhen E; Higgs RE; Hale JE
    J Proteome Res; 2008 Aug; 7(8):3490-7. PubMed ID: 18590316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introduction to chemical proteomics for drug discovery and development.
    Han SY; Hwan Kim S
    Arch Pharm (Weinheim); 2007 Apr; 340(4):169-77. PubMed ID: 17351965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases.
    Nidhi ; Glick M; Davies JW; Jenkins JL
    J Chem Inf Model; 2006; 46(3):1124-33. PubMed ID: 16711732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress and problems in the exploration of therapeutic targets.
    Zheng C; Han L; Yap CW; Xie B; Chen Y
    Drug Discov Today; 2006 May; 11(9-10):412-20. PubMed ID: 16635803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-molecule affinity chromatography coupled mass spectrometry for drug target deconvolution.
    Saxena C; Higgs RE; Zhen E; Hale JE
    Expert Opin Drug Discov; 2009 Jul; 4(7):701-14. PubMed ID: 23489165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput kinase profiling as a platform for drug discovery.
    Goldstein DM; Gray NS; Zarrinkar PP
    Nat Rev Drug Discov; 2008 May; 7(5):391-7. PubMed ID: 18404149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based design of molecular cancer therapeutics.
    van Montfort RL; Workman P
    Trends Biotechnol; 2009 May; 27(5):315-28. PubMed ID: 19339067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent methodological advances in the discovery of GPCR-associated protein complexes.
    Daulat AM; Maurice P; Jockers R
    Trends Pharmacol Sci; 2009 Feb; 30(2):72-8. PubMed ID: 19100631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel trends in high-throughput screening.
    Mayr LM; Bojanic D
    Curr Opin Pharmacol; 2009 Oct; 9(5):580-8. PubMed ID: 19775937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway.
    Lu H; Tonge PJ
    Acc Chem Res; 2008 Jan; 41(1):11-20. PubMed ID: 18193820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical proteomics-based drug design: target and antitarget fishing with a catechol-rhodanine privileged scaffold for NAD(P)(H) binding proteins.
    Ge X; Wakim B; Sem DS
    J Med Chem; 2008 Aug; 51(15):4571-80. PubMed ID: 18616236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing transient binding drugs: a new concept for drug discovery.
    Ohlson S
    Drug Discov Today; 2008 May; 13(9-10):433-9. PubMed ID: 18468561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.