BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 17917675)

  • 41. Thermotoga maritima NusG: domain interaction mediates autoinhibition and thermostability.
    Drögemüller J; Schneider C; Schweimer K; Strauß M; Wöhrl BM; Rösch P; Knauer SH
    Nucleic Acids Res; 2017 Jan; 45(1):446-460. PubMed ID: 27899597
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An Amino Acid Substitution in RNA Polymerase That Inhibits the Utilization of an Alternative Sigma Factor.
    Wang Erickson AF; Deighan P; Garcia CP; Weinzierl ROJ; Hochschild A; Losick R
    J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28507241
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcription factor regulation of RNA polymerase's torque generation capacity.
    Ma J; Tan C; Gao X; Fulbright RM; Roberts JW; Wang MD
    Proc Natl Acad Sci U S A; 2019 Feb; 116(7):2583-2588. PubMed ID: 30635423
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The interaction between sigma70 and the beta-flap of Escherichia coli RNA polymerase inhibits extension of nascent RNA during early elongation.
    Nickels BE; Garrity SJ; Mekler V; Minakhin L; Severinov K; Ebright RH; Hochschild A
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4488-93. PubMed ID: 15761057
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins.
    Toulokhonov I; Artsimovitch I; Landick R
    Science; 2001 Apr; 292(5517):730-3. PubMed ID: 11326100
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conserved functions of the trigger loop and Gre factors in RNA cleavage by bacterial RNA polymerases.
    Miropolskaya N; Esyunina D; Kulbachinskiy A
    J Biol Chem; 2017 Apr; 292(16):6744-6752. PubMed ID: 28242762
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo.
    Imashimizu M; Takahashi H; Oshima T; McIntosh C; Bubunenko M; Court DL; Kashlev M
    Genome Biol; 2015 May; 16(1):98. PubMed ID: 25976475
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulated communication between the upstream face of RNA polymerase and the beta' subunit jaw domain.
    Wigneshweraraj SR; Burrows PC; Nechaev S; Zenkin N; Severinov K; Buck M
    EMBO J; 2004 Oct; 23(21):4264-74. PubMed ID: 15470503
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The RNA polymerase bridge helix YFI motif in catalysis, fidelity and translocation.
    Nedialkov YA; Opron K; Assaf F; Artsimovitch I; Kireeva ML; Kashlev M; Cukier RI; Nudler E; Burton ZF
    Biochim Biophys Acta; 2013 Feb; 1829(2):187-98. PubMed ID: 23202476
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural basis for converting a general transcription factor into an operon-specific virulence regulator.
    Belogurov GA; Vassylyeva MN; Svetlov V; Klyuyev S; Grishin NV; Vassylyev DG; Artsimovitch I
    Mol Cell; 2007 Apr; 26(1):117-29. PubMed ID: 17434131
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of the trigger loop in translesion RNA synthesis by bacterial RNA polymerase.
    Agapov A; Ignatov A; Turtola M; Belogurov G; Esyunina D; Kulbachinskiy A
    J Biol Chem; 2020 Jul; 295(28):9583-9595. PubMed ID: 32439804
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inactivation of the bacterial RNA polymerase due to acquisition of secondary structure by the ω subunit.
    Sarkar P; Sardesai AA; Murakami KS; Chatterji D
    J Biol Chem; 2013 Aug; 288(35):25076-25087. PubMed ID: 23843456
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein.
    Tagami S; Sekine S; Kumarevel T; Hino N; Murayama Y; Kamegamori S; Yamamoto M; Sakamoto K; Yokoyama S
    Nature; 2010 Dec; 468(7326):978-82. PubMed ID: 21124318
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antagonistic regulation of Escherichia coli ribosomal RNA rrnB P1 promoter activity by GreA and DksA.
    Potrykus K; Vinella D; Murphy H; Szalewska-Palasz A; D'Ari R; Cashel M
    J Biol Chem; 2006 Jun; 281(22):15238-48. PubMed ID: 16597620
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair.
    Smith AJ; Savery NJ
    Nucleic Acids Res; 2005; 33(2):755-64. PubMed ID: 15687384
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intrinsic transcript cleavage activity of RNA polymerase.
    Orlova M; Newlands J; Das A; Goldfarb A; Borukhov S
    Proc Natl Acad Sci U S A; 1995 May; 92(10):4596-600. PubMed ID: 7538676
    [TBL] [Abstract][Full Text] [Related]  

  • 58. TraR, a homolog of a RNAP secondary channel interactor, modulates transcription.
    Blankschien MD; Potrykus K; Grace E; Choudhary A; Vinella D; Cashel M; Herman C
    PLoS Genet; 2009 Jan; 5(1):e1000345. PubMed ID: 19148274
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flipping states: a few key residues decide the winning conformation of the only universally conserved transcription factor.
    Shi D; Svetlov D; Abagyan R; Artsimovitch I
    Nucleic Acids Res; 2017 Sep; 45(15):8835-8843. PubMed ID: 28605514
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation through the secondary channel--structural framework for ppGpp-DksA synergism during transcription.
    Perederina A; Svetlov V; Vassylyeva MN; Tahirov TH; Yokoyama S; Artsimovitch I; Vassylyev DG
    Cell; 2004 Aug; 118(3):297-309. PubMed ID: 15294156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.