BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17917706)

  • 1. Effect of stable weak magnetic field on Cr(VI) bio-removal in anaerobic SBR system.
    Xu YB; Sun SY
    Biodegradation; 2008 Jun; 19(3):455-62. PubMed ID: 17917706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of magnetic field on Cr(VI) adsorption capability of given anaerobic sludge.
    Xu YB; Duan XJ; Yan JN; Sun SY
    Biodegradation; 2010 Feb; 21(1):1-10. PubMed ID: 19554459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary studies on continuous chromium(VI) biological removal from wastewater by anaerobic-aerobic activated sludge process.
    Chen Y; Gu G
    Bioresour Technol; 2005 Oct; 96(15):1713-21. PubMed ID: 16023575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of magnetic field on activity of given anaerobic sludge.
    Xu YB; Duan XJ; Yan JN; Du YY; Sun SY
    Biodegradation; 2009 Nov; 20(6):875-83. PubMed ID: 19543694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater.
    Singh SK; Bansal A; Jha MK; Dey A
    Bioresour Technol; 2012 Jan; 104():257-65. PubMed ID: 22154744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading.
    Molokwane PE; Meli CK; Chirwa EM
    Water Sci Technol; 2008; 58(2):399-405. PubMed ID: 18701792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea).
    Choo TP; Lee CK; Low KS; Hishamuddin O
    Chemosphere; 2006 Feb; 62(6):961-7. PubMed ID: 16081131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads.
    Li H; Li Z; Liu T; Xiao X; Peng Z; Deng L
    Bioresour Technol; 2008 Sep; 99(14):6271-9. PubMed ID: 18221868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective adsorption and separation of chromium (VI) on the magnetic iron-nickel oxide from waste nickel liquid.
    Wei L; Yang G; Wang R; Ma W
    J Hazard Mater; 2009 May; 164(2-3):1159-63. PubMed ID: 18954940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling Cr(VI) removal by a combined carbon-activated sludge system.
    Orozco AM; Contreras EM; Zaritzky NE
    J Hazard Mater; 2008 Jan; 150(1):46-52. PubMed ID: 17543453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological and chemical removal of Cr(VI) from waste water: cost and benefit analysis.
    Demir A; Arisoy M
    J Hazard Mater; 2007 Aug; 147(1-2):275-80. PubMed ID: 17275186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of trace chromium (VI) from contaminated water: bio-sorption by Ipomea aquatica.
    Bhat SC; Goswami S; Ghosh UC
    J Environ Sci Eng; 2005 Oct; 47(4):316-21. PubMed ID: 17051919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge.
    Ye J; Yin H; Mai B; Peng H; Qin H; He B; Zhang N
    Bioresour Technol; 2010 Jun; 101(11):3893-902. PubMed ID: 20149646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of bio-sludge concentration on the efficiency of sequencing batch reactor (SBR) system to treat wastewater containing Pb2+ and Ni2+.
    Sirianuntapiboon S; Boonchupleing M
    J Hazard Mater; 2009 Jul; 166(1):356-64. PubMed ID: 19097695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial culture dynamics and chromium (VI) removal in packed-column microcosm reactors.
    Molokwane PE; Nkhalambayausi-Chirwa EM
    Water Sci Technol; 2009; 60(2):381-8. PubMed ID: 19633380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of using microalgal biomass cultured in domestic wastewater for the removal of chromium pollutants.
    Han X; Wong YS; Wong MH; Tam NF
    Water Environ Res; 2008 Jul; 80(7):647-53. PubMed ID: 18710148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexavalent chromium removal by viable, granular anaerobic biomass.
    Massara H; Mulligan CN; Hadjinicolaou J
    Bioresour Technol; 2008 Dec; 99(18):8637-42. PubMed ID: 18550364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waste-activated sludge (WAS) as Cr(III) sorbent biosolid from wastewater effluent.
    Iddou A; Ouali MS
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):240-5. PubMed ID: 18693090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation.
    Vivek Narayanan N; Ganesan M
    J Hazard Mater; 2009 Jan; 161(1):575-80. PubMed ID: 18485589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.