BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 17918243)

  • 1. Exogenous Hsc70, but not thermal preconditioning, confers protection to motoneurons subjected to oxidative stress.
    Robinson MB; Taylor AR; Gifondorwa DJ; Tytell M; Milligan CE
    Dev Neurobiol; 2008 Jan; 68(1):1-17. PubMed ID: 17918243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preconditioning protects the retinal pigment epithelium cells from oxidative stress-induced cell death.
    Sharma RK; Netland PA; Kedrov MA; Johnson DA
    Acta Ophthalmol; 2009 Feb; 87(1):82-8. PubMed ID: 18494742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A physiologically relevant hyperthermia selectively activates constitutive hsp70 in H9c2 cardiac myoblasts and confers oxidative protection.
    Su CY; Chong KY; Chen J; Ryter S; Khardori R; Lai CC
    J Mol Cell Cardiol; 1999 Apr; 31(4):845-55. PubMed ID: 10329212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive hsp70 attenuates hydrogen peroxide-induced membrane lipid peroxidation.
    Su CY; Chong KY; Edelstein K; Lille S; Khardori R; Lai CC
    Biochem Biophys Res Commun; 1999 Nov; 265(2):279-84. PubMed ID: 10558857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific vulnerability of mouse spinal cord motoneurons to membrane depolarization.
    Gou-Fabregas M; Garcera A; Mincheva S; Perez-Garcia MJ; Comella JX; Soler RM
    J Neurochem; 2009 Sep; 110(6):1842-54. PubMed ID: 19627436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondria-derived oxidative stress induces a heat shock protein response.
    Barrett MJ; Alones V; Wang KX; Phan L; Swerdlow RH
    J Neurosci Res; 2004 Nov; 78(3):420-9. PubMed ID: 15389841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of oxidative preconditioning on neural progenitor cells.
    Sharma RK; Zhou Q; Netland PA
    Brain Res; 2008 Dec; 1243():19-26. PubMed ID: 18761002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The apoptotic effects of oxidative stress and antiapoptotic effects of caspase inhibitors on rat notochordal cells.
    Kim KW; Ha KY; Lee JS; Rhyu KW; An HS; Woo YK
    Spine (Phila Pa 1976); 2007 Oct; 32(22):2443-8. PubMed ID: 18090083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal cultures.
    Fujita T; Tozaki-Saitoh H; Inoue K
    Glia; 2009 Feb; 57(3):244-57. PubMed ID: 18756525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The protective effect of quercetin against oxidative stress in the human RPE in vitro.
    Kook D; Wolf AH; Yu AL; Neubauer AS; Priglinger SG; Kampik A; Welge-Lüssen UC
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1712-20. PubMed ID: 18385095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear factor-kappaB mediates cytoprotection of hydrogen peroxide preconditioning against apoptosis induced by oxidative stress in PC12 cells.
    Zhang M; Guo RX; Mo LQ; Liao XX; Li W; Zhi JL; Sun SN; Wang YL; Cui Y; Liu W; Feng JQ; Chen PX
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):304-11. PubMed ID: 18986327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GMEB1, a novel endogenous caspase inhibitor, prevents hypoxia- and oxidative stress-induced neuronal apoptosis.
    Nakagawa T; Tsuruma K; Uehara T; Nomura Y
    Neurosci Lett; 2008 Jun; 438(1):34-7. PubMed ID: 18455874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exogenous androgen treatment delays the stress response following hamster facial nerve injury.
    Tetzlaff J; Tanzer L; Jones KJ
    J Neuroendocrinol; 2007 May; 19(5):383-9. PubMed ID: 17425613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of microglia in the chick embryo spinal cord: implications in the regulation of motoneuronal survival and death.
    Calderó J; Brunet N; Ciutat D; Hereu M; Esquerda JE
    J Neurosci Res; 2009 Aug; 87(11):2447-66. PubMed ID: 19382239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective effects of dehydrocostus lactone against hydrogen peroxide-induced dysfunction and oxidative stress in osteoblastic MC3T3-E1 cells.
    Choi EM; Kim GH; Lee YS
    Toxicol In Vitro; 2009 Aug; 23(5):862-7. PubMed ID: 19457452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat shock proteins and protection of the nervous system.
    Brown IR
    Ann N Y Acad Sci; 2007 Oct; 1113():147-58. PubMed ID: 17656567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constitutive heat shock protein 70 interacts with α-enolase and protects cardiomyocytes against oxidative stress.
    Luo Q; Jiang L; Chen G; Feng Y; Lv Q; Zhang C; Qu S; Zhu H; Zhou B; Xiao X
    Free Radic Res; 2011 Nov; 45(11-12):1355-65. PubMed ID: 21958194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time- and activation-dependency of the protective effect of microglia on astrocytes exposed to peroxide-induced oxidative stress.
    Armbrust E; Röhl C
    Toxicol In Vitro; 2008 Aug; 22(5):1399-404. PubMed ID: 18367369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal killing of human colon cancer cells is associated with the loss of eukaryotic initiation factor 5A.
    Gosslau A; Jao DL; Butler R; Liu AY; Chen KY
    J Cell Physiol; 2009 May; 219(2):485-93. PubMed ID: 19160416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute vincristine pretreatment protects adult mouse cardiac myocytes from oxidative stress.
    Chatterjee K; Zhang J; Honbo N; Simonis U; Shaw R; Karliner JS
    J Mol Cell Cardiol; 2007 Sep; 43(3):327-36. PubMed ID: 17662302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.