These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 17918397)

  • 1. Introduced trout sever trophic connections in watersheds: consequences for a declining amphibian.
    Finlay JC; Vredenburg VT
    Ecology; 2007 Sep; 88(9):2187-98. PubMed ID: 17918397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonnative trout impact an alpine-nesting bird by altering aquatic-insect subsidies.
    Epanchin PN; Knapp RA; Lawler SP
    Ecology; 2010 Aug; 91(8):2406-15. PubMed ID: 20836462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversing introduced species effects: Experimental removal of introduced fish leads to rapid recovery of a declining frog.
    Vredenburg VT
    Proc Natl Acad Sci U S A; 2004 May; 101(20):7646-50. PubMed ID: 15136741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of nonnative fish results in population expansion of a declining amphibian (mountain yellow-legged frog, Rana muscosa).
    Knapp RA; Boiano DM; Vredenburg VT
    Biol Conserv; 2007 Feb; 135(1):11-20. PubMed ID: 17396156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of introduced salmonids on a montane population of Iberian frogs.
    Bosch J; Rincón PA; Boyero L; Martínez-Solano I
    Conserv Biol; 2006 Feb; 20(1):180-9. PubMed ID: 16909671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predatory fish invasion induces within and across ecosystem effects in Yellowstone National Park.
    Koel TM; Tronstad LM; Arnold JL; Gunther KA; Smith DW; Syslo JM; White PJ
    Sci Adv; 2019 Mar; 5(3):eaav1139. PubMed ID: 30906863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species replacement by a nonnative salmonid alters ecosystem function by reducing prey subsidies that support riparian spiders.
    Benjamin JR; Fausch KD; Baxter CV
    Oecologia; 2011 Oct; 167(2):503-12. PubMed ID: 21688160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Invading rainbow trout usurp a terrestrial prey subsidy from native charr and reduce their growth and abundance.
    Baxter CV; Fausch KD; Murakami M; Chapman PL
    Oecologia; 2007 Aug; 153(2):461-70. PubMed ID: 17530293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing changes in amphibian population dynamics following experimental manipulations of introduced fish.
    Pope KL
    Conserv Biol; 2008 Dec; 22(6):1572-81. PubMed ID: 18680499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aquatic predation alters a terrestrial prey subsidy.
    Wesner JS
    Ecology; 2010 May; 91(5):1435-44. PubMed ID: 20503875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Species invasion progressively disrupts the trophic structure of native food webs.
    Wainright CA; Muhlfeld CC; Elser JJ; Bourret SL; Devlin SP
    Proc Natl Acad Sci U S A; 2021 Nov; 118(45):. PubMed ID: 34725150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomagnification of mercury through lake trout (Salvelinus namaycush) food webs of lakes with different physical, chemical and biological characteristics.
    Kidd KA; Muir DC; Evans MS; Wang X; Whittle M; Swanson HK; Johnston T; Guildford S
    Sci Total Environ; 2012 Nov; 438():135-43. PubMed ID: 22982939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pesticides are involved with population declines of amphibians in the California Sierra Nevadas.
    Sparling DW; Fellers G; McConnell L
    ScientificWorldJournal; 2001 May; 1():200-1. PubMed ID: 12805670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes.
    Eloranta AP; Kahilainen KK; Amundsen PA; Knudsen R; Harrod C; Jones RI
    Ecol Evol; 2015 Apr; 5(8):1664-75. PubMed ID: 25937909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of trout in stream food webs: integrating evidence from field surveys and experiments.
    Meissner K; Muotka T
    J Anim Ecol; 2006 Mar; 75(2):421-33. PubMed ID: 16637995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in terrestrial and aquatic sources of methylmercury in stream predators as revealed by stable mercury isotopes.
    Tsui MT; Blum JD; Finlay JC; Balogh SJ; Nollet YH; Palen WJ; Power ME
    Environ Sci Technol; 2014 Sep; 48(17):10128-35. PubMed ID: 25105808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of forest harvesting on trophic structure of eastern Canadian Boreal Shield lakes: insights from stable isotope analyses.
    Glaz P; Sirois P; Archambault P; Nozais C
    PLoS One; 2014; 9(4):e96143. PubMed ID: 24763366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems.
    Gratton C; Vander Zanden MJ
    Ecology; 2009 Oct; 90(10):2689-99. PubMed ID: 19886479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system.
    Kautza A; Mazeika S; Sullivan P
    Ecology; 2016 Mar; 97(3):694-705. PubMed ID: 27197396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting effects of aquatic subsidies on a terrestrial trophic cascade.
    Graf N; Bucher R; Schäfer RB; Entling MH
    Biol Lett; 2017 May; 13(5):. PubMed ID: 28539461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.