BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 17918731)

  • 1. Liposomal delivery of hydrophobic weak acids: enhancement of drug retention using a high intraliposomal pH.
    Joguparthi V; Anderson BD
    J Pharm Sci; 2008 Jan; 97(1):433-54. PubMed ID: 17918731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liposome transport of hydrophobic drugs: gel phase lipid bilayer permeability and partitioning of the lactone form of a hydrophobic camptothecin, DB-67.
    Joguparthi V; Xiang TX; Anderson BD
    J Pharm Sci; 2008 Jan; 97(1):400-20. PubMed ID: 17879989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of intraliposomal pH and its effect on membrane partitioning and passive loading of a hydrophobic camptothecin, DB-67.
    Joguparthi V; Feng S; Anderson BD
    Int J Pharm; 2008 Mar; 352(1-2):17-28. PubMed ID: 18065174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced active liposomal loading of a poorly soluble ionizable drug using supersaturated drug solutions.
    Modi S; Xiang TX; Anderson BD
    J Control Release; 2012 Sep; 162(2):330-9. PubMed ID: 22800581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of intravesicular pH drift and membrane binding on the liposomal release of a model amine-containing permeant.
    Tejwani RW; Anderson BD
    J Pharm Sci; 2008 Jan; 97(1):381-99. PubMed ID: 17694543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of pH and ring-opening hydrolysis kinetics on liposomal release of topotecan.
    Fugit KD; Anderson BD
    J Control Release; 2014 Jan; 174():88-97. PubMed ID: 24231406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cyclodextrin complexation on the liposome permeability of a model hydrophobic weak Acid.
    Joguparthi V; Anderson BD
    Pharm Res; 2008 Nov; 25(11):2505-15. PubMed ID: 18642063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) nanoparticles.
    Yang L; Cui F; Cun D; Tao A; Shi K; Lin W
    Int J Pharm; 2007 Aug; 340(1-2):163-72. PubMed ID: 17482779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper ion-mediated liposomal encapsulation of mitoxantrone: the role of anions in drug loading, retention and release.
    Li C; Cui J; Li Y; Wang C; Li Y; Zhang L; Zhang L; Guo W; Wang J; Zhang H; Hao Y; Wang Y
    Eur J Pharm Sci; 2008 Aug; 34(4-5):333-44. PubMed ID: 18573336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane gradient driven phase transitions within vesicles: lessons for drug delivery.
    Lasic DD; Ceh B; Stuart MC; Guo L; Frederik PM; Barenholz Y
    Biochim Biophys Acta; 1995 Nov; 1239(2):145-56. PubMed ID: 7488619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The highly lipophilic DNA topoisomerase I inhibitor DB-67 displays elevated lactone levels in human blood and potent anticancer activity.
    Bom D; Curran DP; Zhang J; Zimmer SG; Bevins R; Kruszewski S; Howe JN; Bingcang A; Latus LJ; Burke TG
    J Control Release; 2001 Jul; 74(1-3):325-33. PubMed ID: 11489514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A versatile prodrug approach for liposomal core-loading of water-insoluble camptothecin anticancer drugs.
    Liu X; Lynn BC; Zhang J; Song L; Bom D; Du W; Curran DP; Burke TG
    J Am Chem Soc; 2002 Jul; 124(26):7650-1. PubMed ID: 12083906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified hydrolysis kinetics of the active lactone moiety of 10-hydroxycamptothecin by liposomal encapsulation.
    Shi K; Tian Y; Jiang Y; Wang L; Cui F
    Pharm Dev Technol; 2010 Dec; 15(6):644-52. PubMed ID: 19943738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of pH and intraliposomal buffer strength on the rate of liposome content release and intracellular drug delivery.
    Lee RJ; Wang S; Turk MJ; Low PS
    Biosci Rep; 1998 Apr; 18(2):69-78. PubMed ID: 9743475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A targeted liposome delivery system for combretastatin A4: formulation optimization through drug loading and in vitro release studies.
    Nallamothu R; Wood GC; Kiani MF; Moore BM; Horton FP; Thoma LA
    PDA J Pharm Sci Technol; 2006; 60(3):144-55. PubMed ID: 17089683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hexosomes formed from glycerate surfactants--formulation as a colloidal carrier for irinotecan.
    Boyd BJ; Whittaker DV; Khoo SM; Davey G
    Int J Pharm; 2006 Aug; 318(1-2):154-62. PubMed ID: 16621358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of liposome partitioning of ionizable drugs by titration.
    Balon K; Riebesehl BU; Müller BW
    J Pharm Sci; 1999 Aug; 88(8):802-6. PubMed ID: 10430546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition metal-mediated liposomal encapsulation of irinotecan (CPT-11) stabilizes the drug in the therapeutically active lactone conformation.
    Ramsay E; Alnajim J; Anantha M; Taggar A; Thomas A; Edwards K; Karlsson G; Webb M; Bally M
    Pharm Res; 2006 Dec; 23(12):2799-808. PubMed ID: 17063397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-dependent association of SN-38 with lipid bilayers of a novel liposomal formulation.
    Peikov V; Ugwu S; Parmar M; Zhang A; Ahmad I
    Int J Pharm; 2005 Aug; 299(1-2):92-9. PubMed ID: 15996839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel camptothecin analogue (gimatecan)-containing liposomes prepared by the ethanol injection method.
    Stano P; Bufali S; Pisano C; Bucci F; Barbarino M; Santaniello M; Carminati P; Luisi PL
    J Liposome Res; 2004; 14(1-2):87-109. PubMed ID: 15461935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.