These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17918924)

  • 1. Tagged fragment method for evolutionary structure-based de novo lead generation and optimization.
    Liu Q; Masek B; Smith K; Smith J
    J Med Chem; 2007 Nov; 50(22):5392-402. PubMed ID: 17918924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of novel p38alpha MAP kinase inhibitors using fragment-based lead generation.
    Gill AL; Frederickson M; Cleasby A; Woodhead SJ; Carr MG; Woodhead AJ; Walker MT; Congreve MS; Devine LA; Tisi D; O'Reilly M; Seavers LC; Davis DJ; Curry J; Anthony R; Padova A; Murray CW; Carr RA; Jhoti H
    J Med Chem; 2005 Jan; 48(2):414-26. PubMed ID: 15658855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BREED: Generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease.
    Pierce AC; Rao G; Bemis GW
    J Med Chem; 2004 May; 47(11):2768-75. PubMed ID: 15139755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic tailoring and transplanting: a practical method that makes virtual screening more useful.
    Li Y; Zhao Y; Liu Z; Wang R
    J Chem Inf Model; 2011 Jun; 51(6):1474-91. PubMed ID: 21520918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase.
    Frembgen-Kesner T; Elcock AH
    J Mol Biol; 2006 May; 359(1):202-14. PubMed ID: 16616932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. E-novo: an automated workflow for efficient structure-based lead optimization.
    Pearce BC; Langley DR; Kang J; Huang H; Kulkarni A
    J Chem Inf Model; 2009 Jul; 49(7):1797-809. PubMed ID: 19552372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragment-based lead discovery using X-ray crystallography.
    Hartshorn MJ; Murray CW; Cleasby A; Frederickson M; Tickle IJ; Jhoti H
    J Med Chem; 2005 Jan; 48(2):403-13. PubMed ID: 15658854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic and efficient decomposition of two-dimensional structures of small molecules for fragment-based high-throughput docking.
    Kolb P; Caflisch A
    J Med Chem; 2006 Dec; 49(25):7384-92. PubMed ID: 17149868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, biological testing, and binding mode prediction of 6,9-diarylpurin-8-ones as p38 MAP kinase inhibitors.
    Hauser DR; Scior T; Domeyer DM; Kammerer B; Laufer SA
    J Med Chem; 2007 May; 50(9):2060-6. PubMed ID: 17411025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel lead structures for p38 MAP kinase via FieldScreen virtual screening.
    Cheeseright TJ; Holm M; Lehmann F; Luik S; Göttert M; Melville JL; Laufer S
    J Med Chem; 2009 Jul; 52(14):4200-9. PubMed ID: 19489590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based design and subsequent optimization of 2-tolyl-(1,2,3-triazol-1-yl-4-carboxamide) inhibitors of p38 MAP kinase.
    Cogan DA; Aungst R; Breinlinger EC; Fadra T; Goldberg DR; Hao MH; Kroe R; Moss N; Pargellis C; Qian KC; Swinamer AD
    Bioorg Med Chem Lett; 2008 Jun; 18(11):3251-5. PubMed ID: 18462940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors.
    Schneider G; Geppert T; Hartenfeller M; Reisen F; Klenner A; Reutlinger M; Hähnke V; Hiss JA; Zettl H; Keppner S; Spänkuch B; Schneider P
    Future Med Chem; 2011 Mar; 3(4):415-24. PubMed ID: 21452978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NovoFLAP: A ligand-based de novo design approach for the generation of medicinally relevant ideas.
    Damewood JR; Lerman CL; Masek BB
    J Chem Inf Model; 2010 Jul; 50(7):1296-303. PubMed ID: 20586434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in de novo design strategy for practical lead identification.
    Honma T
    Med Res Rev; 2003 Sep; 23(5):606-32. PubMed ID: 12789688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring.
    Zhang Q; Muegge I
    J Med Chem; 2006 Mar; 49(5):1536-48. PubMed ID: 16509572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flux (1): a virtual synthesis scheme for fragment-based de novo design.
    Fechner U; Schneider G
    J Chem Inf Model; 2006; 46(2):699-707. PubMed ID: 16563000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular complexity analysis of de novo designed ligands.
    Boda K; Johnson AP
    J Med Chem; 2006 Oct; 49(20):5869-79. PubMed ID: 17004702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragment-based de novo ligand design by multiobjective evolutionary optimization.
    Dey F; Caflisch A
    J Chem Inf Model; 2008 Mar; 48(3):679-90. PubMed ID: 18307332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach.
    Badrinarayan P; Sastry GN
    J Mol Graph Model; 2012 Apr; 34():89-100. PubMed ID: 22306417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer design of bioactive molecules: a method for receptor-based de novo ligand design.
    Moon JB; Howe WJ
    Proteins; 1991; 11(4):314-28. PubMed ID: 1758885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.