BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 17919118)

  • 1. Chelator-facilitated removal of iron from transferrin: relevance to combined chelation therapy.
    Devanur LD; Evans RW; Evans PJ; Hider RC
    Biochem J; 2008 Jan; 409(2):439-47. PubMed ID: 17919118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of the iron(III) chelator, desferrioxamine, on iron and transferrin uptake by the human malignant melanoma cell.
    Richardson D; Ponka P; Baker E
    Cancer Res; 1994 Feb; 54(3):685-9. PubMed ID: 8306330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo and in vitro effects of 3-hydroxypyridin-4-one chelators on murine hemopoiesis.
    Hoyes KP; Jones HM; Abeysinghe RD; Hider RC; Porter JB
    Exp Hematol; 1993 Jan; 21(1):86-92. PubMed ID: 8417963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311.
    Chaston TB; Lovejoy DB; Watts RN; Richardson DR
    Clin Cancer Res; 2003 Jan; 9(1):402-14. PubMed ID: 12538494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms for the shuttling of plasma non-transferrin-bound iron (NTBI) onto deferoxamine by deferiprone.
    Evans P; Kayyali R; Hider RC; Eccleston J; Porter JB
    Transl Res; 2010 Aug; 156(2):55-67. PubMed ID: 20627190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic intracellular iron chelation combinations: mechanisms and conditions for optimizing iron mobilization.
    Vlachodimitropoulou Koumoutsea E; Garbowski M; Porter J
    Br J Haematol; 2015 Sep; 170(6):874-83. PubMed ID: 26033030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell cycle synchronization and growth inhibition by 3-hydroxypyridin-4-one iron chelators in leukemia cell lines.
    Hoyes KP; Hider RC; Porter JB
    Cancer Res; 1992 Sep; 52(17):4591-9. PubMed ID: 1511427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of non-transferrin-bound iron from blood with iron overload using a device with immobilized desferrioxamine.
    Ambrus CM; Stadler I; Toumbis CA; Stadler A; Anthone S; Anthone R; DeAlarcon P; Deshpande G; Conway J; Vladutiu AO; Ambrus JL
    J Med; 1999; 30(3-4):211-24. PubMed ID: 17312675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron chelators for the treatment of iron overload disease: relationship between structure, redox activity, and toxicity.
    Chaston TB; Richardson DR
    Am J Hematol; 2003 Jul; 73(3):200-10. PubMed ID: 12827659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chelation of bismuth by combining desferrioxamine and deferiprone in rats.
    Tubafard S; Fatemi SJ
    Toxicol Ind Health; 2008 May; 24(4):235-40. PubMed ID: 19022876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desferrioxamine-chelatable iron, a component of serum non-transferrin-bound iron, used for assessing chelation therapy.
    Breuer W; Ermers MJ; Pootrakul P; Abramov A; Hershko C; Cabantchik ZI
    Blood; 2001 Feb; 97(3):792-8. PubMed ID: 11157499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular distribution of desferrioxamine and hydroxypyridin-4-one chelators in K562 cells affects chelation of intracellular iron pools.
    Hoyes KP; Porter JB
    Br J Haematol; 1993 Oct; 85(2):393-400. PubMed ID: 8280612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular zinc content is a major determinant of iron chelator-induced apoptosis of thymocytes.
    Maclean KH; Cleveland JL; Porter JB
    Blood; 2001 Dec; 98(13):3831-9. PubMed ID: 11739193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of desferrioxamine, rhodotorulic acid and cholylhydroxamic acid on transferrin and iron exchange with hepatocytes in culture.
    Baker E; Page M; Torrance J; Grady R
    Clin Physiol Biochem; 1985; 3(6):277-88. PubMed ID: 4075694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the "iron shuttle" hypothesis in chelation therapy: effects of combined deferoxamine and deferiprone treatment in hypertransfused rats with labeled iron stores and in iron-loaded rat heart cells in culture.
    Link G; Konijn AM; Breuer W; Cabantchik ZI; Hershko C
    J Lab Clin Med; 2001 Aug; 138(2):130-8. PubMed ID: 11477380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents III: the effect of the ligands on molecular targets involved in proliferation.
    Darnell G; Richardson DR
    Blood; 1999 Jul; 94(2):781-92. PubMed ID: 10397746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of thallium by combining desferrioxamine and deferiprone chelators in rats.
    Amiri A; Fatemi SJ; Fatemi SN
    Biometals; 2007 Apr; 20(2):159-63. PubMed ID: 16927173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of Fe3+ and Zn2+ from plasma metalloproteins by iron chelating therapeutics depicted with SEC-ICP-AES.
    Sooriyaarachchi M; Gailer J
    Dalton Trans; 2010 Aug; 39(32):7466-73. PubMed ID: 20623073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protection against hydrogen peroxide-mediated cytotoxicity in Friedreich's ataxia fibroblasts using novel iron chelators of the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone class.
    Lim CK; Kalinowski DS; Richardson DR
    Mol Pharmacol; 2008 Jul; 74(1):225-35. PubMed ID: 18424550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of iron and chelators on infections in iron overload and non iron loaded conditions: prospects for the design of new antimicrobial therapies.
    Kontoghiorghes GJ; Kolnagou A; Skiada A; Petrikkos G
    Hemoglobin; 2010 Jun; 34(3):227-39. PubMed ID: 20524813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.