BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 17919194)

  • 1. Intrauterine programming of the endocrine pancreas.
    Remacle C; Dumortier O; Bol V; Goosse K; Romanus P; Theys N; Bouckenooghe T; Reusens B
    Diabetes Obes Metab; 2007 Nov; 9 Suppl 2():196-209. PubMed ID: 17919194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programming of the endocrine pancreas by the early nutritional environment.
    Reusens B; Remacle C
    Int J Biochem Cell Biol; 2006; 38(5-6):913-22. PubMed ID: 16337425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maternal malnutrition programs the endocrine pancreas in progeny.
    Reusens B; Theys N; Dumortier O; Goosse K; Remacle C
    Am J Clin Nutr; 2011 Dec; 94(6 Suppl):1824S-1829S. PubMed ID: 21562089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets.
    Boujendar S; Reusens B; Merezak S; Ahn MT; Arany E; Hill D; Remacle C
    Diabetologia; 2002 Jun; 45(6):856-66. PubMed ID: 12107730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling intrauterine growth retardation in rodents: Impact on pancreas development and glucose homeostasis.
    Schwitzgebel VM; Somm E; Klee P
    Mol Cell Endocrinol; 2009 May; 304(1-2):78-83. PubMed ID: 19433251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome.
    Fernandez-Twinn DS; Ozanne SE
    Physiol Behav; 2006 Jun; 88(3):234-43. PubMed ID: 16782139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beta-cell function and mass in type 2 diabetes.
    Larsen MO
    Dan Med Bull; 2009 Aug; 56(3):153-64. PubMed ID: 19728971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fetal programming: causes and consequences as revealed by studies of dietary manipulation in rats -- a review.
    McArdle HJ; Andersen HS; Jones H; Gambling L
    Placenta; 2006 Apr; 27 Suppl A():S56-60. PubMed ID: 16533523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy balance, physical activity, and cancer risk.
    Fair AM; Montgomery K
    Methods Mol Biol; 2009; 472():57-88. PubMed ID: 19107429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Type 2 diabetes - a matter of failing beta-cell neogenesis? Clues from the GK rat model.
    Movassat J; Calderari S; Fernández E; Martín MA; Escrivá F; Plachot C; Gangnerau MN; Serradas P; Alvarez C; Portha B
    Diabetes Obes Metab; 2007 Nov; 9 Suppl 2():187-95. PubMed ID: 17919193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of pancreatic beta-cell regeneration.
    Khalaileh A; Gonen-Gross T; Magenheim J; Nir T; Porat S; Salpeter S; Stolovich-Rain M; Swisa A; Weinberg N; Dor Y
    Diabetes Obes Metab; 2008 Nov; 10 Suppl 4():128-35. PubMed ID: 18834440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein restriction during gestation and/or lactation causes adverse transgenerational effects on biometry and glucose metabolism in F1 and F2 progenies of rats.
    Pinheiro AR; Salvucci ID; Aguila MB; Mandarim-de-Lacerda CA
    Clin Sci (Lond); 2008 Mar; 114(5):381-92. PubMed ID: 17927565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of maternal undernutrition on diabetes and cardiovascular disease risk in adult offspring.
    Le Clair C; Abbi T; Sandhu H; Tappia PS
    Can J Physiol Pharmacol; 2009 Mar; 87(3):161-79. PubMed ID: 19295658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation to intermittent stress promotes maintenance of beta-cell compensation: comparison with food restriction.
    Bates HE; Sirek A; Kiraly MA; Yue JT; Riddell MC; Matthews SG; Vranic M
    Am J Physiol Endocrinol Metab; 2008 Oct; 295(4):E947-58. PubMed ID: 18713962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of mitochondrial DNA in the development of type 2 diabetes caused by fetal malnutrition.
    Lee YY; Park KS; Pak YK; Lee HK
    J Nutr Biochem; 2005 Apr; 16(4):195-204. PubMed ID: 15808323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrauterine growth restriction in a rodent model and developmental programming of the metabolic syndrome: a critical appraisal of the experimental evidence.
    Neitzke U; Harder T; Schellong K; Melchior K; Ziska T; Rodekamp E; Dudenhausen JW; Plagemann A
    Placenta; 2008 Mar; 29(3):246-54. PubMed ID: 18207235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of methionine in vivo: impact of pregnancy, protein restriction, and fatty liver disease.
    Kalhan SC
    Nestle Nutr Workshop Ser Pediatr Program; 2009; 63():121-31; discussion 131-3, 259-68. PubMed ID: 19346772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human fetal pancreatic insulin-producing cells proliferate in vitro.
    Joglekar MV; Joglekar VM; Joglekar SV; Hardikar AA
    J Endocrinol; 2009 Apr; 201(1):27-36. PubMed ID: 19171567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nongenomic memory of foetal history in chronic diseases development.
    Bezek S; Ujhazy E; Dubovicky M; Mach M
    Neuro Endocrinol Lett; 2008 Oct; 29(5):620-6. PubMed ID: 18987584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc, the pancreas, and diabetes: insights from rodent studies and future directions.
    Taylor CG
    Biometals; 2005 Aug; 18(4):305-12. PubMed ID: 16158221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.