BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 17919328)

  • 1. Host origin of plastid solute transporters in the first photosynthetic eukaryotes.
    Tyra HM; Linka M; Weber AP; Bhattacharya D
    Genome Biol; 2007; 8(10):R212. PubMed ID: 17919328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic connectivity as a driver of host and endosymbiont integration.
    Karkar S; Facchinelli F; Price DC; Weber AP; Bhattacharya D
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10208-15. PubMed ID: 25825767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor.
    Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T
    Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions.
    Reyes-Prieto A; Hackett JD; Soares MB; Bonaldo MF; Bhattacharya D
    Curr Biol; 2006 Dec; 16(23):2320-5. PubMed ID: 17141613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses.
    Suzuki K; Miyagishima SY
    Mol Biol Evol; 2010 Mar; 27(3):581-90. PubMed ID: 19910386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes.
    Reyes-Prieto A; Moustafa A
    Sci Rep; 2012; 2():955. PubMed ID: 23233874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis.
    Colleoni C; Linka M; Deschamps P; Handford MG; Dupree P; Weber AP; Ball SG
    Mol Biol Evol; 2010 Dec; 27(12):2691-701. PubMed ID: 20576760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within Plantae.
    Reyes-Prieto A; Bhattacharya D
    Mol Biol Evol; 2007 Nov; 24(11):2358-61. PubMed ID: 17827169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlamydiae has contributed at least 55 genes to Plantae with predominantly plastid functions.
    Moustafa A; Reyes-Prieto A; Bhattacharya D
    PLoS One; 2008 May; 3(5):e2205. PubMed ID: 18493612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.
    Li S; Nosenko T; Hackett JD; Bhattacharya D
    Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydia, cyanobiont, or host: who was on top in the ménage à trois?
    Facchinelli F; Colleoni C; Ball SG; Weber AP
    Trends Plant Sci; 2013 Dec; 18(12):673-9. PubMed ID: 24126104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes.
    Rodríguez-Ezpeleta N; Brinkmann H; Burey SC; Roure B; Burger G; Löffelhardt W; Bohnert HJ; Philippe H; Lang BF
    Curr Biol; 2005 Jul; 15(14):1325-30. PubMed ID: 16051178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor.
    Weber AP; Linka M; Bhattacharya D
    Eukaryot Cell; 2006 Mar; 5(3):609-12. PubMed ID: 16524915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular timeline for the origin of photosynthetic eukaryotes.
    Yoon HS; Hackett JD; Ciniglia C; Pinto G; Bhattacharya D
    Mol Biol Evol; 2004 May; 21(5):809-18. PubMed ID: 14963099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plastid establishment did not require a chlamydial partner.
    Domman D; Horn M; Embley TM; Williams TA
    Nat Commun; 2015 Mar; 6():6421. PubMed ID: 25758953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of a chimeric genome in the cyanobacterial ancestor of plastids.
    Gross J; Meurer J; Bhattacharya D
    BMC Evol Biol; 2008 Apr; 8():117. PubMed ID: 18433492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids?
    Huang J; Gogarten JP
    Genome Biol; 2007; 8(6):R99. PubMed ID: 17547748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes.
    Maruyama S; Misawa K; Iseki M; Watanabe M; Nozaki H
    BMC Evol Biol; 2008 May; 8():151. PubMed ID: 18485228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies.
    Gagat P; Bodył A; Mackiewicz P
    Biol Direct; 2013 Jul; 8():18. PubMed ID: 23845039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.