These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17919689)

  • 1. Theoretical analysis of the magnetocardiographic pattern for reentry wave propagation in a three-dimensional human heart model.
    Im UB; Kwon SS; Kim K; Lee YH; Park YK; Youn CH; Shim EB
    Prog Biophys Mol Biol; 2008; 96(1-3):339-56. PubMed ID: 17919689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A collocation--Galerkin finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A numerical scheme for modeling wavefront propagation on a monolayer of arbitrary geometry.
    Zozor S; Blanc O; Jacquemet V; Virag N; Vesin JM; Pruvot E; Kappenberger L; Henriquez C
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):412-20. PubMed ID: 12723052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action potential morphology heterogeneity in the atrium and its effect on atrial reentry: a two-dimensional and quasi-three-dimensional study.
    Kuo SR; Trayanova NA
    Philos Trans A Math Phys Eng Sci; 2006 Jun; 364(1843):1349-66. PubMed ID: 16766349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave front fragmentation due to ventricular geometry in a model of the rabbit heart.
    Rogers JM
    Chaos; 2002 Sep; 12(3):779-787. PubMed ID: 12779606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of QT interval prolongation in the creation of spiral wave type reentry.
    Shibata N; Watanabe H; Sakuma I; Kodama I; Niwa R; Fukui Y; Toyama J; Hosoda S
    Heart Vessels; 1997; Suppl 12():228-31. PubMed ID: 9476590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Magnetocardiographic localization of an accessory pathway in patients with WPW syndrome].
    Nomura M; Watanabe K; Katayama M; Takeuchi A; Ishihara S; Kiyoshige K; Fujimoto T; Fujino K; Nakaya Y; Mori H
    J Cardiol; 1990; 20(1):227-39. PubMed ID: 2093756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of atrial arrhythmia in superconducting quantum interference device magnetocardiography; preliminary result of a totally-noninvasive localization method for atrial current mapping.
    Kim D; Kim K; Lee YH; Ahn H
    Interact Cardiovasc Thorac Surg; 2007 Jun; 6(3):274-9. PubMed ID: 17669841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of the ventricular conduction system.
    Tusscher KH; Panfilov AV
    Prog Biophys Mol Biol; 2008; 96(1-3):152-70. PubMed ID: 17910889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two forms of spiral-wave reentry in an ionic model of ischemic ventricular myocardium.
    Xu A; Guevara MR
    Chaos; 1998 Mar; 8(1):157-174. PubMed ID: 12779719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New index for categorising cardiac reentrant wave: in silico evaluation.
    Shim EB; Hong SB; Lim KM; Leem CH; Youn CH; Pak HN; Earm YE; Noble D
    IET Syst Biol; 2011 Sep; 5(5):317-23. PubMed ID: 22010758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reentry wave formation in excitable media with stochastically generated inhomogeneities.
    Kuklik P; Zebrowski JJ
    Chaos; 2005 Sep; 15(3):33301. PubMed ID: 16252987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias.
    Nash MP; Panfilov AV
    Prog Biophys Mol Biol; 2004; 85(2-3):501-22. PubMed ID: 15142759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basic mechanisms of cardiac impulse propagation and associated arrhythmias.
    Kléber AG; Rudy Y
    Physiol Rev; 2004 Apr; 84(2):431-88. PubMed ID: 15044680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling wave propagation in realistic heart geometries using the phase-field method.
    Fenton FH; Cherry EM; Karma A; Rappel WJ
    Chaos; 2005 Mar; 15(1):13502. PubMed ID: 15836267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of heart excitation patterns caused by a local inhomogeneity.
    Aliev RR; Panfilov AV
    J Theor Biol; 1996 Jul; 181(1):33-40. PubMed ID: 8796189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A time dependent anatomically detailed model of cardiac conduction.
    Saxberg BE; Grumbach MP; Cohen RJ
    Comput Cardiol; 1985; 12():401-4. PubMed ID: 11542765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reentrant arrhythmias and their control in models of mammalian cardiac tissue.
    Biktashev VN; Holden AV
    J Electrocardiol; 1999; 32 Suppl():76-83. PubMed ID: 10688306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of T wave based on cardiac model of electrical activity: effects of anisotropy of myocardium and inhomogeneity of ventricular gradient on QRS-T angle.
    Inoue M; Hori M; Iwai K; Fukunami M
    Jpn Heart J; 1986 Nov; 27 Suppl 1():255-66. PubMed ID: 3820591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.