BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

877 related articles for article (PubMed ID: 17920272)

  • 1. The effect of trunk flexion on able-bodied gait.
    Saha D; Gard S; Fatone S
    Gait Posture; 2008 May; 27(4):653-60. PubMed ID: 17920272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of trunk-flexed postures on balance and metabolic energy expenditure during standing.
    Saha D; Gard S; Fatone S; Ondra S
    Spine (Phila Pa 1976); 2007 Jul; 32(15):1605-11. PubMed ID: 17621207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of an expected twofold perturbation on able-bodied gait: Trunk flexion and uneven ground surface.
    AminiAghdam S; Blickhan R
    Gait Posture; 2018 Mar; 61():431-438. PubMed ID: 29477127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of trunk flexion on lower-limb kinetics of able-bodied gait.
    Kluger D; Major MJ; Fatone S; Gard SA
    Hum Mov Sci; 2014 Feb; 33():395-403. PubMed ID: 24423389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of trunk inclination on lower limb joint and lumbar moments in able men during the stance phase of gait.
    Leteneur S; Gillet C; Sadeghi H; Allard P; Barbier F
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):190-5. PubMed ID: 19091448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotor stability in able-bodied trunk-flexed gait across uneven ground.
    AminiAghdam S; Müller R; Blickhan R
    Hum Mov Sci; 2018 Dec; 62():176-183. PubMed ID: 30384186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gait analysis of simulated knee flexion contracture to elucidate knee-spine syndrome.
    Harato K; Nagura T; Matsumoto H; Otani T; Toyama Y; Suda Y
    Gait Posture; 2008 Nov; 28(4):687-92. PubMed ID: 18585042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking.
    Gard SA; Miff SC; Kuo AD
    Hum Mov Sci; 2004 Apr; 22(6):597-610. PubMed ID: 15063043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotor adaptations for changes in the slope of the walking surface.
    Prentice SD; Hasler EN; Groves JJ; Frank JS
    Gait Posture; 2004 Dec; 20(3):255-65. PubMed ID: 15531172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait synchronized force modulation during the stance period of one limb achieved by an active partial body weight support system.
    Franz JR; Riley PO; Dicharry J; Allaire PE; Kerrigan DC
    J Biomech; 2008 Nov; 41(15):3116-20. PubMed ID: 18986653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Criterion validity of 3D trunk accelerations to assess external work and power in able-bodied gait.
    Meichtry A; Romkes J; Gobelet C; Brunner R; Müller R
    Gait Posture; 2007 Jan; 25(1):25-32. PubMed ID: 16483779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High heeled shoes: their effect on center of mass position, posture, three-dimensional kinematics, rearfoot motion, and ground reaction forces.
    Snow RE; Williams KR
    Arch Phys Med Rehabil; 1994 May; 75(5):568-76. PubMed ID: 8185452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of frontal plane trunk kinematics and hip and knee moments during anticipated and unanticipated walking and side step cutting tasks.
    Houck JR; Duncan A; De Haven KE
    Gait Posture; 2006 Nov; 24(3):314-22. PubMed ID: 16293416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing.
    Blackburn JT; Padua DA
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):313-9. PubMed ID: 18037546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion.
    Mulavara AP; Bloomberg JJ
    J Vestib Res; 2002-2003; 12(5-6):255-69. PubMed ID: 14501102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of the six major gait determinants on the vertical center of mass trajectory and the vertical ground reaction force.
    Hayot C; Sakka S; Lacouture P
    Hum Mov Sci; 2013 Apr; 32(2):279-89. PubMed ID: 23725827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of military load carriage on kinematics of gait.
    Majumdar D; Pal MS; Majumdar D
    Ergonomics; 2010 Jun; 53(6):782-91. PubMed ID: 20496244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of sagittal center of pressure offset on gait kinematics and kinetics.
    Haim A; Rozen N; Wolf A
    J Biomech; 2010 Mar; 43(5):969-77. PubMed ID: 20047747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual deprivation leads to gait adaptations that are age- and context-specific: II. Kinematic parameters.
    Hallemans A; Beccu S; Van Loock K; Ortibus E; Truijen S; Aerts P
    Gait Posture; 2009 Oct; 30(3):307-11. PubMed ID: 19560925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.