These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 17920606)

  • 41. Fully automatable two-dimensional hydrophilic interaction liquid chromatography-reversed phase liquid chromatography with online tandem mass spectrometry for shotgun proteomics.
    Zhao Y; Kong RP; Li G; Lam MP; Law CH; Lee SM; Lam HC; Chu IK
    J Sep Sci; 2012 Jul; 35(14):1755-63. PubMed ID: 22807358
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Separation of nonionic surfactants according to functionality by hydrophilic interaction chromatography and comprehensive two-dimensional liquid chromatography.
    Abrar S; Trathnigg B
    J Chromatogr A; 2010 Dec; 1217(52):8222-9. PubMed ID: 21094949
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel highly hydrophilic zwitterionic monolithic column for hydrophilic interaction chromatography.
    Jiang Z; Smith NW; Ferguson PD; Taylor MR
    J Sep Sci; 2009 Aug; 32(15-16):2544-55. PubMed ID: 19606441
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Single column comprehensive analysis of pharmaceutical preparations using dual-injection mixed-mode (ion-exchange and reversed-phase) and hydrophilic interaction liquid chromatography.
    Kazarian AA; Taylor MR; Haddad PR; Nesterenko PN; Paull B
    J Pharm Biomed Anal; 2013 Dec; 86():174-81. PubMed ID: 24001905
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fully automatic separation and identification of phosphopeptides by continuous pH-gradient anion exchange online coupled with reversed-phase liquid chromatography mass spectrometry.
    Dai J; Wang LS; Wu YB; Sheng QH; Wu JR; Shieh CH; Zeng R
    J Proteome Res; 2009 Jan; 8(1):133-41. PubMed ID: 19053533
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous separation of anionic, cationic, and neutral components in capillary liquid chromatography using mixed-bed column of hydrophilic and anion-exchange stationary phases.
    Igawa N; Kitagawa S; Ohtani H
    J Sep Sci; 2009 Feb; 32(3):359-63. PubMed ID: 19137531
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mixed-mode chromatography for fractionation of peptides, phosphopeptides, and sialylated glycopeptides.
    Gilar M; Yu YQ; Ahn J; Fournier J; Gebler JC
    J Chromatogr A; 2008 May; 1191(1-2):162-70. PubMed ID: 18281053
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Retention behavior of oligomeric proanthocyanidins in hydrophilic interaction chromatography.
    Yanagida A; Murao H; Ohnishi-Kameyama M; Yamakawa Y; Shoji A; Tagashira M; Kanda T; Shindo H; Shibusawa Y
    J Chromatogr A; 2007 Mar; 1143(1-2):153-61. PubMed ID: 17223120
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimizing the peak capacity per unit time in one-dimensional and off-line two-dimensional liquid chromatography for the separation of complex peptide samples.
    Eeltink S; Dolman S; Swart R; Ursem M; Schoenmakers PJ
    J Chromatogr A; 2009 Oct; 1216(44):7368-74. PubMed ID: 19285679
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced glycan nanoprofiling by weak anion exchange preparative chromatography, mild acid desialylation, and nanoliquid chromatography-mass spectrometry with nanofluorescence detection.
    Kalay H; Ambrosini M; Chiodo F; van Kooyk Y; García-Vallejo JJ
    Electrophoresis; 2013 Aug; 34(16):2350-6. PubMed ID: 23893432
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of an online two-dimensional nano-scale liquid chromatography/mass spectrometry method for improved chromatographic performance and hydrophobic peptide recovery.
    Liu H; Finch JW; Luongo JA; Li GZ; Gebler JC
    J Chromatogr A; 2006 Nov; 1135(1):43-51. PubMed ID: 17027011
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Retention of arsenic species on zwitterionic stationary phase in hydrophilic interaction chromatography.
    Xie D; Mattusch J; Wennrich R
    J Sep Sci; 2010 Mar; 33(6-7):817-25. PubMed ID: 20222073
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Separation of purine and pyrimidine bases and nucleosides by hydrophilic interaction chromatography.
    Marrubini G; Mendoza BE; Massolini G
    J Sep Sci; 2010 Mar; 33(6-7):803-16. PubMed ID: 20222071
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Contribution of component monosaccharides to the coordinates of neutral and sialyl pyridylaminated N-glycans on a two-dimensional sugar map.
    Tomiya N; Takahashi N
    Anal Biochem; 1998 Nov; 264(2):204-10. PubMed ID: 9866684
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simultaneous separation and analysis of water- and fat-soluble vitamins on multi-modal reversed-phase weak anion exchange material by HPLC-UV.
    Dabre R; Azad N; Schwämmle A; Lämmerhofer M; Lindner W
    J Sep Sci; 2011 Apr; 34(7):761-72. PubMed ID: 21384549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of different column types for the hydrophilic interaction chromatographic separation of iron-citrate and copper-histidine species from plants.
    Köster J; Shi R; von Wirén N; Weber G
    J Chromatogr A; 2011 Jul; 1218(30):4934-43. PubMed ID: 21474140
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation and characterization of polymethacrylate monolithic capillary columns with dual hydrophilic interaction reversed-phase retention mechanism for polar compounds.
    Urban J; Skeríková V; Jandera P; Kubícková R; Pospísilová M
    J Sep Sci; 2009 Aug; 32(15-16):2530-43. PubMed ID: 19585529
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A highly sensitive assay for ritodrine in human serum by hydrophilic interaction chromatography-tandem mass spectrometry.
    Ohmori T; Nakamura M; Tada S; Sugiyama T; Itoh Y; Udagawa Y; Hirano K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Jan; 861(1):95-100. PubMed ID: 18054846
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of various HILIC materials for the fast separation of polar compounds.
    Chauve B; Guillarme D; Cléon P; Veuthey JL
    J Sep Sci; 2010 Mar; 33(6-7):752-64. PubMed ID: 20183827
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydroxymethyl methacrylate-based monolithic columns designed for separation of oligonucleotides in hydrophilic-interaction capillary liquid chromatography.
    Holdsvendová P; Suchánková J; Buncek M; Backovská V; Coufal P
    J Biochem Biophys Methods; 2007 Feb; 70(1):23-9. PubMed ID: 17207534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.