BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17920624)

  • 1. Electrostatic contributions to the stability of the GCN4 leucine zipper structure.
    Matousek WM; Ciani B; Fitch CA; Garcia-Moreno B; Kammerer RA; Alexandrescu AT
    J Mol Biol; 2007 Nov; 374(1):206-19. PubMed ID: 17920624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interhelical ion pairing in coiled coils: solution structure of a heterodimeric leucine zipper and determination of pKa values of Glu side chains.
    Marti DN; Jelesarov I; Bosshard HR
    Biochemistry; 2000 Oct; 39(42):12804-18. PubMed ID: 11041845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse electrostatic effect: electrostatic repulsion in the unfolded state stabilizes a leucine zipper.
    Marti DN; Bosshard HR
    Biochemistry; 2004 Oct; 43(39):12436-47. PubMed ID: 15449933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic interactions in leucine zippers: thermodynamic analysis of the contributions of Glu and His residues and the effect of mutating salt bridges.
    Marti DN; Bosshard HR
    J Mol Biol; 2003 Jul; 330(3):621-37. PubMed ID: 12842476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear Magnetic Resonance Structures of GCN4p Are Largely Conserved When Ion Pairs Are Disrupted at Acidic pH but Show a Relaxation of the Coiled Coil Superhelix.
    Kaplan AR; Brady MR; Maciejewski MW; Kammerer RA; Alexandrescu AT
    Biochemistry; 2017 Mar; 56(11):1604-1619. PubMed ID: 28230348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuations between stabilizing and destabilizing electrostatic contributions of ion pairs in conformers of the c-Myc-Max leucine zipper.
    Kumar S; Nussinov R
    Proteins; 2000 Dec; 41(4):485-97. PubMed ID: 11056036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential heterodimeric parallel coiled-coil formation by synthetic Max and c-Myc leucine zippers: a description of putative electrostatic interactions responsible for the specificity of heterodimerization.
    Lavigne P; Kondejewski LH; Houston ME; Sönnichsen FD; Lix B; Skyes BD; Hodges RS; Kay CM
    J Mol Biol; 1995 Dec; 254(3):505-20. PubMed ID: 7490766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A parallel coiled-coil tetramer with offset helices.
    Liu J; Deng Y; Zheng Q; Cheng CS; Kallenbach NR; Lu M
    Biochemistry; 2006 Dec; 45(51):15224-31. PubMed ID: 17176044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The leucine zippers of the HLH-LZ proteins Max and c-Myc preferentially form heterodimers.
    Muhle-Goll C; Nilges M; Pastore A
    Biochemistry; 1995 Oct; 34(41):13554-64. PubMed ID: 7577944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A buried polar residue in the hydrophobic interface of the coiled-coil peptide, GCN4-p1, plays a thermodynamic, not a kinetic role in folding.
    Knappenberger JA; Smith JE; Thorpe SH; Zitzewitz JA; Matthews CR
    J Mol Biol; 2002 Aug; 321(1):1-6. PubMed ID: 12139928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of coiled-coil formation.
    Steinmetz MO; Jelesarov I; Matousek WM; Honnappa S; Jahnke W; Missimer JH; Frank S; Alexandrescu AT; Kammerer RA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):7062-7. PubMed ID: 17438295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subdomain folding of the coiled coil leucine zipper from the bZIP transcriptional activator GCN4.
    Lumb KJ; Carr CM; Kim PS
    Biochemistry; 1994 Jun; 33(23):7361-7. PubMed ID: 8003501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil.
    O'Shea EK; Klemm JD; Kim PS; Alber T
    Science; 1991 Oct; 254(5031):539-44. PubMed ID: 1948029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiparallel four-stranded coiled coil specified by a 3-3-1 hydrophobic heptad repeat.
    Deng Y; Liu J; Zheng Q; Eliezer D; Kallenbach NR; Lu M
    Structure; 2006 Feb; 14(2):247-55. PubMed ID: 16472744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic characterization of the structural stability of the coiled-coil region of the bZIP transcription factor GCN4.
    Thompson KS; Vinson CR; Freire E
    Biochemistry; 1993 Jun; 32(21):5491-6. PubMed ID: 8504069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two pairs of oppositely charged amino acids from Jun and Fos confer heterodimerization to GCN4 leucine zipper.
    John M; Briand JP; Granger-Schnarr M; Schnarr M
    J Biol Chem; 1994 Jun; 269(23):16247-53. PubMed ID: 8206929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR spin state exchange spectroscopy reveals equilibrium of two distinct conformations of leucine zipper GCN4 in solution.
    Nikolaev Y; Pervushin K
    J Am Chem Soc; 2007 May; 129(20):6461-9. PubMed ID: 17469817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of coiled coil folding: the nature of the transition states.
    Bosshard HR; Dürr E; Hitz T; Jelesarov I
    Biochemistry; 2001 Mar; 40(12):3544-52. PubMed ID: 11297420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do interhelical side chain-backbone hydrogen bonds participate in formation of leucine zipper coiled coils?
    Tropsha A; Bowen JP; Brown FK; Kizer JS
    Proc Natl Acad Sci U S A; 1991 Nov; 88(21):9488-92. PubMed ID: 1946362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extremely fast folding of a very stable leucine zipper with a strengthened hydrophobic core and lacking electrostatic interactions between helices.
    Dürr E; Jelesarov I; Bosshard HR
    Biochemistry; 1999 Jan; 38(3):870-80. PubMed ID: 9893981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.