These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 17922002)

  • 1. Nucleation and growth mechanism of ferroelectric domain-wall motion.
    Shin YH; Grinberg I; Chen IW; Rappe AM
    Nature; 2007 Oct; 449(7164):881-4. PubMed ID: 17922002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic ferroelectric switching from first principles.
    Liu S; Grinberg I; Rappe AM
    Nature; 2016 Jun; 534(7607):360-3. PubMed ID: 27306186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulations of critical cluster sizes and nucleation rates of water.
    Merikanto J; Vehkamaki H; Zapadinsky E
    J Chem Phys; 2004 Jul; 121(2):914-24. PubMed ID: 15260623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principles theory, coarse-grained models, and simulations of ferroelectrics.
    Waghmare UV
    Acc Chem Res; 2014 Nov; 47(11):3242-9. PubMed ID: 25361389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-volatile domain nucleation and growth in multiferroic BiFeO3 films.
    Chen YC; Wang GF; Tai HH; Chen JW; Huang YC; Yang JC; Chu YH
    Nanotechnology; 2011 Jun; 22(25):254030. PubMed ID: 21572209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials.
    Jesse S; Rodriguez BJ; Choudhury S; Baddorf AP; Vrejoiu I; Hesse D; Alexe M; Eliseev EA; Morozovska AN; Zhang J; Chen LQ; Kalinin SV
    Nat Mater; 2008 Mar; 7(3):209-15. PubMed ID: 18246074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and energetics of 180° domain walls in PbTiO3 by density functional theory.
    Behera RK; Lee CW; Lee D; Morozovska AN; Sinnott SB; Asthagiri A; Gopalan V; Phillpot SR
    J Phys Condens Matter; 2011 May; 23(17):175902. PubMed ID: 21493969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials.
    Hegedüs J; Elliott SR
    Nat Mater; 2008 May; 7(5):399-405. PubMed ID: 18362909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Predictive Theory for Domain Walls in Oxide Ferroelectrics Based on Interatomic Interactions and its Implications for Collective Material Properties.
    Samanta A; Yadav S; Gu Z; Meyers CJG; Wu L; Chen D; Pandya S; York RA; Martin LW; Spanier JE; Grinberg I
    Adv Mater; 2022 Feb; 34(7):e2106021. PubMed ID: 34695263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the thermal, chemical, and mechanical mechanisms of ultraviolet ablation in poly(methyl methacrylate) via molecular dynamics simulations.
    Conforti PF; Prasad M; Garrison BJ
    Acc Chem Res; 2008 Aug; 41(8):915-24. PubMed ID: 18662023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous nucleation and growth of melt in copper.
    Zheng L; An Q; Xie Y; Sun Z; Luo SN
    J Chem Phys; 2007 Oct; 127(16):164503. PubMed ID: 17979356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative capacitance in multidomain ferroelectric superlattices.
    Zubko P; Wojdeł JC; Hadjimichael M; Fernandez-Pena S; Sené A; Luk'yanchuk I; Triscone JM; Íñiguez J
    Nature; 2016 Jun; 534(7608):524-8. PubMed ID: 27296225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization dynamics and non-equilibrium switching processes in ferroelectrics.
    Vopsaroiu M; Weaver PM; Cain MG; Reece M; Chong KB
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1867-73. PubMed ID: 21937319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleation in monolayers.
    Vollhardt D
    Adv Colloid Interface Sci; 2006 Nov; 123-126():173-88. PubMed ID: 16860771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomistic nucleation and growth mechanism for single-wall carbon nanotubes on catalytic nanoparticle surfaces.
    Wang JT; Chen C; Ohno K; Wang E; Chen XL; Wang DS; Mizuseki H; Kawazoe Y
    Nanotechnology; 2010 Mar; 21(11):115602. PubMed ID: 20173247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-solid phase transitions: interface controlled reactivity and formation of intermediate structures.
    Leoni S
    Chemistry; 2007; 13(36):10022-9. PubMed ID: 17999395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics study of ferroelectric domain nucleation and domain switching dynamics.
    Boddu V; Endres F; Steinmann P
    Sci Rep; 2017 Apr; 7(1):806. PubMed ID: 28400598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.