These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17922345)

  • 1. Effect of low-frequency gain and venting effects on the benefit derived from directionality and noise reduction in hearing aids.
    Keidser G; Carter L; Chalupper J; Dillon H
    Int J Audiol; 2007 Oct; 46(10):554-68. PubMed ID: 17922345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full time directional versus user selectable microphone modes in hearing aids.
    Ricketts T; Henry P; Gnewikow D
    Ear Hear; 2003 Oct; 24(5):424-39. PubMed ID: 14534412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hearing aid accessories for adults: the remote FM microphone.
    Boothroyd A
    Ear Hear; 2004 Feb; 25(1):22-33. PubMed ID: 14770015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of frequency-dependent microphone directionality on horizontal localization performance in hearing-aid users.
    Keidser G; O'Brien A; Hain JU; McLelland M; Yeend I
    Int J Audiol; 2009 Nov; 48(11):789-803. PubMed ID: 19951147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of multi-channel wide dynamic range compression, noise reduction, and the directional microphone on horizontal localization performance in hearing aid wearers.
    Keidser G; Rohrseitz K; Dillon H; Hamacher V; Carter L; Rass U; Convery E
    Int J Audiol; 2006 Oct; 45(10):563-79. PubMed ID: 17062498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distance and reverberation effects on directional benefit.
    Ricketts TA; Hornsby BW
    Ear Hear; 2003 Dec; 24(6):472-84. PubMed ID: 14663347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of noise source configuration on directional benefit using symmetric and asymmetric directional hearing aid fittings.
    Hornsby BW; Ricketts TA
    Ear Hear; 2007 Apr; 28(2):177-86. PubMed ID: 17496669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of frequency modulation (FM) transmitter microphone directivity on speech perception in noise.
    Lewis MS; Crandell CC; Kreisman NV
    Am J Audiol; 2004 Jun; 13(1):16-22. PubMed ID: 15248800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of in-the-ear microphone directionality on sound direction identification.
    Chung K; Neuman AC; Higgins M
    J Acoust Soc Am; 2008 Apr; 123(4):2264-75. PubMed ID: 18397031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of high frequencies to speech recognition in quiet and noise in listeners with varying degrees of high-frequency sensorineural hearing loss.
    Amos NE; Humes LE
    J Speech Lang Hear Res; 2007 Aug; 50(4):819-34. PubMed ID: 17675588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of venting on wind noise levels measured at the eardrum.
    Chung K
    Ear Hear; 2013; 34(4):470-81. PubMed ID: 23403807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of high-frequency amplification on the objective and subjective performance of hearing instrument users with varying degrees of high-frequency hearing loss.
    Plyler PN; Fleck EL
    J Speech Lang Hear Res; 2006 Jun; 49(3):616-27. PubMed ID: 16787899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of the base line response on self-adjustments of hearing aid gain.
    Keidser G; Dillon H; Convery E
    J Acoust Soc Am; 2008 Sep; 124(3):1668-81. PubMed ID: 19045657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of performance on the hearing in noise test using directional microphones and digital noise reduction algorithms.
    Nordrum S; Erler S; Garstecki D; Dhar S
    Am J Audiol; 2006 Jun; 15(1):81-91. PubMed ID: 16803795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the desired sensation level [input/output] algorithm for adults with hearing loss: the acceptable range for amplified conversational speech.
    Jenstad LM; Bagatto MP; Seewald RC; Scollie SD; Cornelisse LE; Scicluna R
    Ear Hear; 2007 Dec; 28(6):793-811. PubMed ID: 17982367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental noise reduction configuration: Effects on preferences, satisfaction, and speech understanding.
    Zakis JA; Hau J; Blamey PJ
    Int J Audiol; 2009 Dec; 48(12):853-67. PubMed ID: 20017682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intelligibility of speech in noise at high presentation levels: effects of hearing loss and frequency region.
    Summers V; Cord MT
    J Acoust Soc Am; 2007 Aug; 122(2):1130-7. PubMed ID: 17672659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The design and evaluation of a hearing aid with trainable amplification parameters.
    Zakis JA; Dillon H; McDermott HJ
    Ear Hear; 2007 Dec; 28(6):812-30. PubMed ID: 17982368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [What improvements can be gained by additional boring in hearing aid fitting?].
    BrĂ¼gel FJ; Schorn K; Hofer R
    Laryngorhinootologie; 1992 Feb; 71(2):79-82. PubMed ID: 1571059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The effect of the frequency characteristics of hearing aids on speech perception in children with neurosensory hearing loss].
    Kuks EN; Kireeva GA; Poliakova SK
    Vestn Otorinolaringol; 1990; (2):22-6. PubMed ID: 2360302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.