These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 17922528)
1. TC-tuned biocompatible suspension of La0.73Sr0.27MnO3 for magnetic hyperthermia. Prasad NK; Rathinasamy K; Panda D; Bahadur D J Biomed Mater Res B Appl Biomater; 2008 May; 85(2):409-16. PubMed ID: 17922528 [TBL] [Abstract][Full Text] [Related]
2. Functionalization of La(0.7)Sr(0.3)MnO3 nanoparticles with polymer: studies on enhanced hyperthermia and biocompatibility properties for biomedical applications. Thorat ND; Khot VM; Salunkhe AB; Ningthoujam RS; Pawar SH Colloids Surf B Biointerfaces; 2013 Apr; 104():40-7. PubMed ID: 23298586 [TBL] [Abstract][Full Text] [Related]
3. Tailoring La Soleymani M; Edrissi M; Alizadeh AM J Mater Chem B; 2017 Jun; 5(24):4705-4712. PubMed ID: 32264313 [TBL] [Abstract][Full Text] [Related]
4. Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia. Melnikov OV; Gorbenko OY; Markelova MN; Kaul AR; Atsarkin VA; Demidov VV; Soto C; Roy EJ; Odintsov BM J Biomed Mater Res A; 2009 Dec; 91(4):1048-55. PubMed ID: 19127514 [TBL] [Abstract][Full Text] [Related]
5. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Li FR; Yan WH; Guo YH; Qi H; Zhou HX Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033 [TBL] [Abstract][Full Text] [Related]
6. Solution to the bioheat equation for hyperthermia with La(1-x)Ag(y)MnO(3-delta) nanoparticles: the effect of temperature autostabilization. Atsarkin VA; Levkin LV; Posvyanskiy VS; Melnikov OV; Markelova MN; Gorbenko OY; Kaul AR Int J Hyperthermia; 2009 May; 25(3):240-7. PubMed ID: 19437239 [TBL] [Abstract][Full Text] [Related]
8. Investigation on Tc tuned nano particles of magnetic oxides for hyperthermia applications. Giri J; Ray A; Dasgupta S; Datta D; Bahadur D Biomed Mater Eng; 2003; 13(4):387-99. PubMed ID: 14646053 [TBL] [Abstract][Full Text] [Related]
9. Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating. Kaman O; Pollert E; Veverka P; Veverka M; Hadová E; Knízek K; Marysko M; Kaspar P; Klementová M; Grünwaldová V; Vasseur S; Epherre R; Mornet S; Goglio G; Duguet E Nanotechnology; 2009 Jul; 20(27):275610. PubMed ID: 19531865 [TBL] [Abstract][Full Text] [Related]
10. Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. Khot VM; Salunkhe AB; Thorat ND; Ningthoujam RS; Pawar SH Dalton Trans; 2013 Jan; 42(4):1249-58. PubMed ID: 23138108 [TBL] [Abstract][Full Text] [Related]
11. In vitro hyperthermic effect of magnetic fluid on cervical and breast cancer cells. Bhardwaj A; Parekh K; Jain N Sci Rep; 2020 Sep; 10(1):15249. PubMed ID: 32943662 [TBL] [Abstract][Full Text] [Related]
12. Modified MgFe2O4 Ferrimagnetic Nanoparticles to Improve Magnetic and AC Magnetically-Induced Heating Characteristics for Hyperthermia. Lee S; Jeun M J Nanosci Nanotechnol; 2015 Dec; 15(12):9597-602. PubMed ID: 26682384 [TBL] [Abstract][Full Text] [Related]
13. Ognjanović M; Radović M; Mirković M; Prijović Ž; Puerto Morales MD; Čeh M; Vranješ-Đurić S; Antić B ACS Appl Mater Interfaces; 2019 Nov; 11(44):41109-41117. PubMed ID: 31610125 [TBL] [Abstract][Full Text] [Related]
14. Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia. Zhao DL; Zhang HL; Zeng XW; Xia QS; Tang JT Biomed Mater; 2006 Dec; 1(4):198-201. PubMed ID: 18458406 [TBL] [Abstract][Full Text] [Related]
16. Core-shell La(1-x)Sr(x)MnO3 nanoparticles as colloidal mediators for magnetic fluid hyperthermia. Pollert E; Kaman O; Veverka P; Veverka M; Marysko M; Záveta K; Kacenka M; Lukes I; Jendelová P; Kaspar P; Burian M; Herynek V Philos Trans A Math Phys Eng Sci; 2010 Sep; 368(1927):4389-405. PubMed ID: 20732893 [TBL] [Abstract][Full Text] [Related]
17. Ferrimagnetic nanoparticles enhance microwave heating for tumor hyperthermia therapy. Pearce JA; Cook JR; Emelianov SY Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2751-4. PubMed ID: 21096213 [TBL] [Abstract][Full Text] [Related]
18. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy. Gogoi M; Jaiswal MK; Sarma HD; Bahadur D; Banerjee R Integr Biol (Camb); 2017 Jun; 9(6):555-565. PubMed ID: 28513646 [TBL] [Abstract][Full Text] [Related]
19. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
20. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]