These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 17922754)
21. Metabolic model for acetate uptake by a mixed culture of phosphate- and glycogen-accumulating organisms under anaerobic conditions. Yagci N; Artan N; Cokgör EU; Randall CW; Orhon D Biotechnol Bioeng; 2003 Nov; 84(3):359-73. PubMed ID: 12968290 [TBL] [Abstract][Full Text] [Related]
22. The long-term effect of initial pH control on the enrichment culture of phosphorus- and glycogen-accumulating organisms with a mixture of propionic and acetic acids as carbon sources. Zhang C; Chen Y; Liu Y Chemosphere; 2007 Nov; 69(11):1713-21. PubMed ID: 17662338 [TBL] [Abstract][Full Text] [Related]
23. Model-based evaluation of competition between polyphosphate- and glycogen-accumulating organisms. Whang LM; Filipe CD; Park JK Water Res; 2007 Mar; 41(6):1312-24. PubMed ID: 17275874 [TBL] [Abstract][Full Text] [Related]
24. Involvement of the TCA cycle in the anaerobic metabolism of polyphosphate accumulating organisms (PAOs). Zhou Y; Pijuan M; Zeng RJ; Yuan Z Water Res; 2009 Mar; 43(5):1330-40. PubMed ID: 19144373 [TBL] [Abstract][Full Text] [Related]
25. Short-term temperature effects on the anaerobic metabolism of glycogen accumulating organisms. Lopez-Vazquez CM; Song YI; Hooijmans CM; Brdjanovic D; Moussa MS; Gijzen HJ; van Loosdrecht MM Biotechnol Bioeng; 2007 Jun; 97(3):483-95. PubMed ID: 17171717 [TBL] [Abstract][Full Text] [Related]
26. Temperature effects on the aerobic metabolism of glycogen-accumulating organisms. Lopez-Vazquez CM; Song YI; Hooijmans CM; Brdjanovic D; Moussa MS; Gijzen HJ; van Loosdrecht MC Biotechnol Bioeng; 2008 Oct; 101(2):295-306. PubMed ID: 18623226 [TBL] [Abstract][Full Text] [Related]
28. Metabolic pathway for propionate utilization by phosphorus-accumulating organisms in activated sludge: 13C labeling and in vivo nuclear magnetic resonance. Lemos PC; Serafim LS; Santos MM; Reis MA; Santos H Appl Environ Microbiol; 2003 Jan; 69(1):241-51. PubMed ID: 12514001 [TBL] [Abstract][Full Text] [Related]
29. The effect of free nitrous acid on key anaerobic processes in enhanced biological phosphorus removal systems. Ye L; Pijuan M; Yuan Z Bioresour Technol; 2013 Feb; 130():382-9. PubMed ID: 23313766 [TBL] [Abstract][Full Text] [Related]
30. Bioenergetic models for acetate and phosphate transport in bacteria important in enhanced biological phosphorus removal. Burow LC; Mabbett AN; McEwan AG; Bond PL; Blackall LL Environ Microbiol; 2008 Jan; 10(1):87-98. PubMed ID: 18211269 [TBL] [Abstract][Full Text] [Related]
31. Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. Lu H; Oehmen A; Virdis B; Keller J; Yuan Z Water Res; 2006 Dec; 40(20):3838-48. PubMed ID: 17070894 [TBL] [Abstract][Full Text] [Related]
32. Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions. Lu H; Keller J; Yuan Z Water Res; 2007 Dec; 41(20):4646-56. PubMed ID: 17658580 [TBL] [Abstract][Full Text] [Related]
33. Anaerobic metabolic models for phosphorus- and glycogen-accumulating organisms with mixed acetic and propionic acids as carbon sources. Zhang C; Chen Y; Randall AA; Gu G Water Res; 2008 Aug; 42(14):3745-56. PubMed ID: 18656224 [TBL] [Abstract][Full Text] [Related]
34. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems. Zhang HL; Sheng GP; Fang W; Wang YP; Fang CY; Shao LM; Yu HQ Water Res; 2015 Nov; 84():171-80. PubMed ID: 26233656 [TBL] [Abstract][Full Text] [Related]
35. Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage. Acevedo B; Oehmen A; Carvalho G; Seco A; Borrás L; Barat R Water Res; 2012 Apr; 46(6):1889-900. PubMed ID: 22297158 [TBL] [Abstract][Full Text] [Related]
36. Recent developments in the biochemistry and ecology of enhanced biological phosphorus removal. Kortstee GJ; Appeldoorn KJ; Bonting CF; van Niel EW; van Veen HW Biochemistry (Mosc); 2000 Mar; 65(3):332-40. PubMed ID: 10739476 [TBL] [Abstract][Full Text] [Related]
37. Anaerobic central metabolic pathways active during polyhydroxyalkanoate production in uncultured cluster 1 Defluviicoccus enriched in activated sludge communities. Burow LC; Mabbett AN; Borrás L; Blackall LL FEMS Microbiol Lett; 2009 Sep; 298(1):79-84. PubMed ID: 19622073 [TBL] [Abstract][Full Text] [Related]
38. Characterizing the biochemical activity of full-scale enhanced biological phosphorus removal systems: A comparison with metabolic models. Pijuan M; Oehmen A; Baeza JA; Casas C; Yuan Z Biotechnol Bioeng; 2008 Jan; 99(1):170-9. PubMed ID: 17514755 [TBL] [Abstract][Full Text] [Related]
39. Production of polyhydroxyalkanoates from fermented sugar cane molasses by a mixed culture enriched in glycogen accumulating organisms. Bengtsson S; Pisco AR; Reis MA; Lemos PC J Biotechnol; 2010 Feb; 145(3):253-63. PubMed ID: 19958801 [TBL] [Abstract][Full Text] [Related]
40. Anaerobic and aerobic metabolism of glycogen-accumulating organisms selected with propionate as the sole carbon source. Oehmen A; Zeng RJ; Saunders AM; Blackall LL; Keller J; Yuan Z Microbiology (Reading); 2006 Sep; 152(Pt 9):2767-2778. PubMed ID: 16946271 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]