BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 17922832)

  • 1. Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline.
    Quatrini P; Scaglione G; De Pasquale C; Riela S; Puglia AM
    J Appl Microbiol; 2008 Jan; 104(1):251-9. PubMed ID: 17922832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioremediation potential of a tropical soil contaminated with a mixture of crude oil and production water.
    Alvarez VM; Santos SC; Casella Rda C; Vital RL; Sebastin GV; Seldin L
    J Microbiol Biotechnol; 2008 Dec; 18(12):1966-74. PubMed ID: 19131701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR.
    Heiss-Blanquet S; Benoit Y; Maréchaux C; Monot F
    J Appl Microbiol; 2005; 99(6):1392-403. PubMed ID: 16313412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The degradation of n-hexadecane in soil by thermophilic geobacilli.
    Marchant R; Sharkey FH; Banat IM; Rahman TJ; Perfumo A
    FEMS Microbiol Ecol; 2006 Apr; 56(1):44-54. PubMed ID: 16542404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method for the detection of alkane-monooxygenase homologous genes (alkB) in soils based on PCR-hybridization.
    Kloos K; Munch JC; Schloter M
    J Microbiol Methods; 2006 Sep; 66(3):486-96. PubMed ID: 16522338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular detection and phylogenetic analysis of the alkane 1-monooxygenase gene from Gordonia spp.
    Shen FT; Young LS; Hsieh MF; Lin SY; Young CC
    Syst Appl Microbiol; 2010 Mar; 33(2):53-9. PubMed ID: 20047814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions.
    Mnif S; Chamkha M; Sayadi S
    J Appl Microbiol; 2009 Sep; 107(3):785-94. PubMed ID: 19320948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of crude oil by thermophilic bacteria isolated from a volcano island.
    Meintanis C; Chalkou KI; Kormas KA; Karagouni AD
    Biodegradation; 2006 Mar; 17(2):105-11. PubMed ID: 16456612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean.
    Wang L; Wang W; Lai Q; Shao Z
    Environ Microbiol; 2010 May; 12(5):1230-42. PubMed ID: 20148932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils.
    Margesin R; Labbé D; Schinner F; Greer CW; Whyte LG
    Appl Environ Microbiol; 2003 Jun; 69(6):3085-92. PubMed ID: 12788702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of alkane hydroxylase genes in Rhodococcus sp. strain TMP2 that degrades a branched alkane.
    Takei D; Washio K; Morikawa M
    Biotechnol Lett; 2008 Aug; 30(8):1447-52. PubMed ID: 18414802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of hydrocarbon-degrading Klebsiella strains isolated from hydrocarbon-contaminated estuaries.
    Rodrigues DF; Sakata SK; Comasseto JV; Bícego MC; Pellizari VH
    J Appl Microbiol; 2009 Apr; 106(4):1304-14. PubMed ID: 19187158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes.
    Pérez-de-Mora A; Engel M; Schloter M
    Microb Ecol; 2011 Nov; 62(4):959-72. PubMed ID: 21567188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of alkane-degrading bacteria from deep-sea Mediterranean sediments.
    Tapilatu Y; Acquaviva M; Guigue C; Miralles G; Bertrand JC; Cuny P
    Lett Appl Microbiol; 2010 Feb; 50(2):234-6. PubMed ID: 19943883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR.
    Panicker G; Mojib N; Aislabie J; Bej AK
    Antonie Van Leeuwenhoek; 2010 Mar; 97(3):275-87. PubMed ID: 20043207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional gene abundances (nahAc, alkB, xylE) in the assessment of the efficacy of bioremediation.
    Salminen JM; Tuomi PM; Jørgensen KS
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):638-52. PubMed ID: 18592409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic and phylogenetic analysis of microbial communities during phytoremediation of soil contaminated with weathered hydrocarbons and heavy metals.
    Palmroth MR; Koskinen PE; Kaksonen AH; Münster U; Pichtel J; Puhakka JA
    Biodegradation; 2007 Dec; 18(6):769-82. PubMed ID: 17372705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil.
    Luz AP; Pellizari VH; Whyte LG; Greer CW
    Can J Microbiol; 2004 May; 50(5):323-33. PubMed ID: 15213740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated Alpine soils.
    Labbé D; Margesin R; Schinner F; Whyte LG; Greer CW
    FEMS Microbiol Ecol; 2007 Feb; 59(2):466-75. PubMed ID: 17313586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil.
    Zhang DC; Mörtelmaier C; Margesin R
    Sci Total Environ; 2012 Apr; 421-422():184-96. PubMed ID: 22386232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.