These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 17922903)

  • 1. Structural disorder promotes assembly of protein complexes.
    Hegyi H; Schad E; Tompa P
    BMC Struct Biol; 2007 Oct; 7():65. PubMed ID: 17922903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevalent structural disorder in E. coli and S. cerevisiae proteomes.
    Tompa P; Dosztanyi Z; Simon I
    J Proteome Res; 2006 Aug; 5(8):1996-2000. PubMed ID: 16889422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-protein Interaction Networks of E. coli and S. cerevisiae are similar.
    Wuchty S; Uetz P
    Sci Rep; 2014 Nov; 4():7187. PubMed ID: 25431098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of the interactions between hsp70 chaperones and the yeast DNA replication protein Orc4p.
    Álamo MM; Sánchez-Gorostiaga A; Serrano AM; Prieto A; Cuéllar J; Martín-Benito J; Valpuesta JM; Giraldo R
    J Mol Biol; 2010 Oct; 403(1):24-39. PubMed ID: 20732327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks.
    Wang Y; Sun H; Du W; Blanzieri E; Viero G; Xu Y; Liang Y
    PLoS One; 2014; 9(9):e108716. PubMed ID: 25268881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermolecular Interactions between Hsp90 and Hsp70.
    Doyle SM; Hoskins JR; Kravats AN; Heffner AL; Garikapati S; Wickner S
    J Mol Biol; 2019 Jul; 431(15):2729-2746. PubMed ID: 31125567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of disorder between S. cerevisiae interacting proteins.
    Rue-Albrecht K; Shields DC; Khaldi N
    Mol Biosyst; 2012 Jan; 8(1):417-25. PubMed ID: 22108582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale aggregation analysis of eukaryotic proteins reveals an involvement of intrinsically disordered regions in protein folding.
    Uemura E; Niwa T; Minami S; Takemoto K; Fukuchi S; Machida K; Imataka H; Ueda T; Ota M; Taguchi H
    Sci Rep; 2018 Jan; 8(1):678. PubMed ID: 29330519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal protein fluctuations in populations of microorganisms.
    Salman H; Brenner N; Tung CK; Elyahu N; Stolovicki E; Moore L; Libchaber A; Braun E
    Phys Rev Lett; 2012 Jun; 108(23):238105. PubMed ID: 23003996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein complexes in bacterial and yeast mitochondrial membranes differ in their sensitivity towards dissociation by SDS.
    Gubbens J; Slijper M; de Kruijff B; de Kroon AI
    Biochim Biophys Acta; 2008 Dec; 1784(12):2012-8. PubMed ID: 18817900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of Yeast Dynein with Dynein Light Chain and Dynactin: GENERAL IMPLICATIONS FOR INTRINSICALLY DISORDERED DUPLEX SCAFFOLDS IN MULTIPROTEIN ASSEMBLIES.
    Jie J; Löhr F; Barbar E
    J Biol Chem; 2015 Sep; 290(39):23863-74. PubMed ID: 26253171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of restrained molecular dynamics to predict the conformations of phosphorylated receiver domains in two-component signaling systems.
    Foster CA; West AH
    Proteins; 2017 Jan; 85(1):155-176. PubMed ID: 27802580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation.
    Weinert BT; Schölz C; Wagner SA; Iesmantavicius V; Su D; Daniel JA; Choudhary C
    Cell Rep; 2013 Aug; 4(4):842-51. PubMed ID: 23954790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaperone-assisted protein aggregate reactivation: Different solutions for the same problem.
    Aguado A; Fernández-Higuero JA; Moro F; Muga A
    Arch Biochem Biophys; 2015 Aug; 580():121-34. PubMed ID: 26159839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overrepresentation of interactions between homologous proteins in interactomes.
    Orlowski J; Kaczanowski S; Zielenkiewicz P
    FEBS Lett; 2007 Jan; 581(1):52-6. PubMed ID: 17174313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular determinants of the yeast Arc1p-aminoacyl-tRNA synthetase complex assembly.
    Karanasios E; Simader H; Panayotou G; Suck D; Simos G
    J Mol Biol; 2007 Dec; 374(4):1077-90. PubMed ID: 17976650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal peptidase I processed secretory signal sequences: Selection for and against specific amino acids at the second position of mature protein.
    Zalucki YM; Jennings MP
    Biochem Biophys Res Commun; 2017 Feb; 483(3):972-977. PubMed ID: 28088521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thioredoxin and glutaredoxin isoforms.
    Vlamis-Gardikas A; Holmgren A
    Methods Enzymol; 2002; 347():286-96. PubMed ID: 11898418
    [No Abstract]   [Full Text] [Related]  

  • 19. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome folding kinetics is limited by protein halflife.
    Zou T; Williams N; Ozkan SB; Ghosh K
    PLoS One; 2014; 9(11):e112701. PubMed ID: 25393560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.