BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 17923117)

  • 1. Improved cytosolic translocation and tumor-killing activity of Tat-shepherdin conjugates mediated by co-treatment with Tat-fused endosome-disruptive HA2 peptide.
    Sugita T; Yoshikawa T; Mukai Y; Yamanada N; Imai S; Nagano K; Yoshida Y; Shibata H; Yoshioka Y; Nakagawa S; Kamada H; Tsunoda S; Tsutsumi Y
    Biochem Biophys Res Commun; 2007 Nov; 363(4):1027-32. PubMed ID: 17923117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organelle-targeted delivery of biological macromolecules using the protein transduction domain: potential applications for Peptide aptamer delivery into the nucleus.
    Yoshikawa T; Sugita T; Mukai Y; Yamanada N; Nagano K; Nabeshi H; Yoshioka Y; Nakagawa S; Abe Y; Kamada H; Tsunoda S; Tsutsumi Y
    J Mol Biol; 2008 Jul; 380(5):777-82. PubMed ID: 18571668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of TAT cell membrane penetration efficiency by dimethyl sulphoxide.
    Wang H; Zhong CY; Wu JF; Huang YB; Liu CB
    J Control Release; 2010 Apr; 143(1):64-70. PubMed ID: 20025914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The augmentation of intracellular delivery of peptide therapeutics by artificial protein transduction domains.
    Yoshikawa T; Sugita T; Mukai Y; Abe Y; Nakagawa S; Kamada H; Tsunoda S; Tsutsumi Y
    Biomaterials; 2009 Jul; 30(19):3318-23. PubMed ID: 19304319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tat peptide mediated cellular uptake of SiO2 submicron particles.
    Mao Z; Wan L; Hu L; Ma L; Gao C
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):432-40. PubMed ID: 19846283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular cargo delivery using tat peptide and derivatives.
    Zhao M; Weissleder R
    Med Res Rev; 2004 Jan; 24(1):1-12. PubMed ID: 14595670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection.
    Lo SL; Wang S
    Biomaterials; 2008 May; 29(15):2408-14. PubMed ID: 18295328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endosome-disruptive peptides for improving cytosolic delivery of bioactive macromolecules.
    Nakase I; Kobayashi S; Futaki S
    Biopolymers; 2010; 94(6):763-70. PubMed ID: 20564044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of uptake of cell penetrating peptides and their cargoes in permeabilized wheat immature embryos.
    Chugh A; Eudes F
    FEBS J; 2008 May; 275(10):2403-14. PubMed ID: 18397318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo inducible RNA interference using cell permeable protein carrier.
    Endoh T; Sisido M; Ohtsuki T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):127-8. PubMed ID: 18029619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel RasGRF1-derived Tat-fused peptides inhibiting Ras-dependent proliferation and migration in mouse and human cancer cells.
    Sacco E; Metalli D; Spinelli M; Manzoni R; Samalikova M; Grandori R; Morrione A; Traversa S; Alberghina L; Vanoni M
    Biotechnol Adv; 2012; 30(1):233-43. PubMed ID: 21620943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer.
    Wadia JS; Dowdy SF
    Adv Drug Deliv Rev; 2005 Feb; 57(4):579-96. PubMed ID: 15722165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A TAT-streptavidin fusion protein directs uptake of biotinylated cargo into mammalian cells.
    Albarran B; To R; Stayton PS
    Protein Eng Des Sel; 2005 Mar; 18(3):147-52. PubMed ID: 15820981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method for monitoring the cytosolic delivery of peptide cargo.
    Cheung JC; Kim Chiaw P; Deber CM; Bear CE
    J Control Release; 2009 Jul; 137(1):2-7. PubMed ID: 19285529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a fusiogenic peptide GALA for intracellular delivery.
    Nakase I; Kogure K; Harashima H; Futaki S
    Methods Mol Biol; 2011; 683():525-33. PubMed ID: 21053154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced targeting and killing of tumor cells expressing the CXC chemokine receptor 4 by transducible anticancer peptides.
    Snyder EL; Saenz CC; Denicourt C; Meade BR; Cui XS; Kaplan IM; Dowdy SF
    Cancer Res; 2005 Dec; 65(23):10646-50. PubMed ID: 16322205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular transduction using cell-penetrating peptides.
    Sawant R; Torchilin V
    Mol Biosyst; 2010 Apr; 6(4):628-40. PubMed ID: 20237640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of HIV-1 TAT peptide as an enhancer of HSV-TK/GCV cancer gene therapy.
    Rautsi O; Lehmusvaara S; Ketola A; Määttä AM; Wahlfors J; Pellinen R
    Cancer Gene Ther; 2008 May; 15(5):303-14. PubMed ID: 18309353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5.
    Goda N; Tenno T; Inomata K; Shirakawa M; Tanaka T; Hiroaki H
    Exp Cell Res; 2008 Aug; 314(13):2352-61. PubMed ID: 18602100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of gene transfer using YIGSR analog of Tat-derived peptide.
    Saleh AF; Aojula HS; Pluen A
    Biopolymers; 2008 Jan; 89(1):62-71. PubMed ID: 17902173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.